
TYX CORPORATION
Productivity Enhancement Systems

TPS Server

1 Scope
This document describes the TPS Server component. The TPS Server provides support for RTS monitoring
and control as well as support for bi-directional data transfer with the TPS and synchronous operation. The
document describes the available services and interfaces for PAWS Studio.

2 Overview
The TPS Server is a component that provides:
• • Access to the RTS Server as an open server component capable of runtime collaboration with

other control and monitoring components
• • A stable interface to access the RTS executive functionality insulating the client applications from

internal RTS server interface or semantic changes
• • Dispatch interfaces compatible with Visual Basic, C++, C#, Java Script, VB Script bindings
• • A variety of COM events during the operation of the RTS Executive
• • Full configuration support for the RTS Server
• • Support for I/O interception
• • Support for RTS distribution
• • Support for bi-directional data transfer with the ATLAS program
• • Support for both synchronous and asynchronous operation
• • Support for custom I/O resources
• • Access to ATLAS global variables
• • Support to Run an ATLAS block of code

The TPS Server interfaces organize and expose methods for other component objects or clients to interact
with the operation of the RTS Executive.

A TPS Server is a client of the RTS Server and a server for its clients. It provides simplified access to RTS
Server functionality for clients executing a TPS.

The RTS Server interfaces are subject to change and are designed and maintained for TYX internal usage
only. TYX does not recommend the usage of RTS Server interfaces in any client applications.

The TPS Server is designed and maintained by TYX to provide a public and stable interface to the RTS
Server. Client applications can use the TPS Server component and interfaces; TYX will maintain and
ensure compatibility between the TPS Server and the RTS Server.

TPS

Server
GPIB / VXI
P&P / IVI

ATE

RTS
Server

COM / DCOM

TYX Internal Interfaces Public Interfaces

Client
Application

COM

Process / Machine Boundary

3 TPS Server Component
The TPS Server component is essentially a RTS COM adapter. It is externally creatable using the COM
API.

The TPS Server component and its interfaces are described in the type library packaged as a resource with
“RtsAx.dll”. The “RtsAx.dll” file is located in “<usr>\tyx\com directory”, where <usr> is the directory
selected at installation – the default is “C:\usr”.

In addition to the functionality provided by the IRtsControl interface, the TPS Server provides:
• • Support for bi-directional data transfer with the ATLAS program
• • Support for both synchronous and asynchronous operation
• • Support for custom I/O resources
• • Access to ATLAS global variables
• • Support to Run an ATLAS block of code

The ITpsServer interface derives from IRtsControl interface [Refer to RTS COM Adapters.doc for an
l he functionality exposed by the IRtsControl interface it

eration and the transfer of parameters and results between

 IDL Description

0C0268914D3),

 IDispatch** pVal);
perty Results")]

 HRESULT Results([out, retval] IDispatch** pVal);
string("property Synchronous")]
out, retval] VARIANT_BOOL* pVal);

 Property
Description

3.1 ITpsServer Interface

exp anation of this interface]. In addition to t
provides properties to control the synchronous op
the client and the TPS.

.1.13
[
 object,
 uuid(3F6B2941-F0DA-11D2-BBB0-0

dual,
 helpstring("ITpsServer Interface"),

pointer_default (unique)
]
interface ITpsServer : IRtsControl
{
 [propget, id(1), helpstring("property Parameters")]
 HRESULT Parameters([out, retval]
 [propget, id(2), helpstring("pro

 [propget, id(3), help
 HRESULT Synchronous([
 [propput, id(3), helpstring("property Synchronous")]
 HRESULT Synchronous([in] VARIANT_BOOL newVal);
};

3.1.2 Parameters
Type Access
IDispatch* Read-Only Interface pointer to the PARAMETERS DataBagResource object

The Parameters property provides support for passing parameters from the cl

interface pointer to the PARAMETERS Dat
ient application to the TPS.

aBagResource object. The
nterfaces: IIOResource, ITextResource,

ollections can be used to populate the data container with
DataContainer and the DataBagResource components for
the DataBagResource object is read-write.

The property is an
DataBagResource object implements a number of additional i
IDataBag and IDataCollection. The data access c
parameters. Please see the documentation the

ails. The property is read-only; the access to det

Th meters are passed as a collection of named values. On the TPS side te para he parameters can be retrieved
 defin RS”. The parameters are
posed

1.3

e Access Description

by ing and reading from a text file resource with the name “PARAMETE
ex in name / value pairs.

3. Results Property
Typ
IDispatch* Read-Only Interface pointer to the RESULTS DataBagResource object

T lts pro es su results from the TPS to the client application. The
property is an in to bject

plements a num : IIOResource, ITextResource, IDataBag and IDataCol tion.

lues pairs.

s Description

he Resu perty provid pport for returning
terface pointer

ber of additional interfaces
 the RESULTS DataBagResource object. The DataBagResource o

lecim
The data access collections can be used to query the data container for results. Please see the
documentation the DataContainer and the DataBagResource components for details. The property is read-
only, the access to the DataBagResource object is read-write.

The results are passed as a collection of named values. On the TPS side the results can be returned by
defining and writing to a text file resource with the name “RESULTS”. The results are expected in named
va

3.1.4 Synchronous Property
Type Acces
VARIANT_BOOL Read-Write Synchronous / Asynchronous operation mode

T hronou ontrol de. The default property value is VARIANT_TRUE,
i op t i aits before

turning fro th ad, run or unload sequences are complete.

he Sync s property c s the operation mo
.e. the object

m
erates by defaul
e call until the lo

n synchronous mode. In synchronous mode the TPS Server w
re

 : Client
TpsServer :
ITpsServer

Server :
CRtsAppMach

Load(project)

Open(project)

Wait

OnState(Ready)
OnRtsState(Ready)

Loading

Figure 1 Load Synchronous Sequence Diagram

 : Client
TpsServer :
ITpsServer

Server :
CRtsAppMach

Unload

Wait

Close

OnState(Closed)
OnRtsState(Unloaded)

Closing

Figure 2 Unload Sequence Diagram

 : Client
TpsServer :
ITpsServer

Server :
CRtsAppMach

Run

Wait

Run

OnState(Finish)

Running

OnRtsState(Finish)

Figure 3 Run Synchronous Sequence Diagram

As shown above, during a synchronous operation the TpsServer object waits internally for the started
operation to complete. The Reset method can be called during a synchronous call to reset the RTS state and
return from the synchronous method call immediately. Calling a synchronous method during the execution
of another synchronous method will result in erroneous operation.

The synchronous execution mode is designed to be used from simple clients without extensive user
interaction to automate the TPS loading, unloading and execution.

3.2 ITpsServerEx Interface

The ITpsServerEx interface derives from the ITpsServer interface. In addition to the functionality exposed
by ITpsServer the ITpsServerEx interface exposes methods to access predefined global variables, run a
particular TPS block and substitute IO resources.

3.2.1 IDL Description
[

object,
 uuid(3F6B2942-F0DA-11D2-BBB0-00C0268914D3),
 dual,
 helpstring("ITpsServer Interface"),
 pointer_default(unique)
]

interface ITpsServerEx : ITpsServer
{
 [id(11), helpstring("method GetData")]
 HRESULT GetData([in] BSTR strName, [out, retval] VARIANT* pVal);
 [id(12), helpstring("method PutData")]
 HRESULT PutData([in] BSTR strName, [in] VARIANT newVal);
 [id(13), helpstring("method RunBlock")]
 HRESULT RunBlock([in] long lBlockId);
 [id(14), helpstring("method RegisterIOResource")]
 HRESULT RegisterIOResource([in] BSTR sName, [in] IUnknown* pUnkResource);
 [id(15), helpstring("method UnRegisterIOResource")]
 HRESULT UnRegisterIOResource([in] BSTR sName);
};

3.2.2 GetData Method
Parameters
Name Type Access Description
strName BSTR [in] Variable name
pVal VARIANT* [out, retval] Pointer to the Variable value

The GetData method retrieves the value of the specified predefined variable from the ATLAS program.
The available variables depend on the ATLAS subset used. The predefined variables for IEEE.716.89
subsets are MEASUREMENT, GO, HI, LO, NOGO, MAX-TIME and MANUALINTERVENTION.

3.2.3 PutData Method
Parameters
Name Type Access Description
strName BSTR [in] Variable name
newVal VARIANT [in] New value

The PutData method sets the desired predefined variable to the specified value. The available variables
depend on the ATLAS subset used. The predefined variables for IEEE.716.89 subsets are
MEASUREMENT, GO, HI, LO, NOGO, MAX-TIME and MANUALINTERVENTION.

3.2.4 RunBlock Method
Parameters
Name Type Access Description
lBlockId long [in] Block Number (Block numbers begin from 1….n)

The RunBlock method executes the specified TPS block. Two entry points delimit a block. The ATLAS
block is identified by the ‘E’ statement number in the ATLAS program. The ATLAS block can be run in
synchronous/asynchronous mode as described by the Synchronous property above. The context in which
the ATLAS block is run by the RTS Executive is set up through the RunBlockContext property described
later.

3.2.5 RegisterIOResource Method
Parameters
Name Type Access Description
sName BSTR [in] Name of the IO resource
pUnkResource IUnknown* [in] Interface pointer to the desired resource

The RegisterIOResource method replaces the resource specified by the sName parameter, with the
specified resource. The pUnkResource interface pointer parameter must point to a custom I/O resource

object. Custom I/O resource components must implement at least the IIOResource and ITextResource or
IBinaryResource interfaces as defined in the I/O Subsystem documents. For details see the I/O Subsystem
documentation.

The RegisterIOResource method must be called in the “UNLOADED” RTS state. The adapter must be first
attached to the RTS Server. The provided resource is used during the following TPS loading. If a resource
is already registered an error is reported, to register a new resource call UnregisterIOResource before
registering the resource.

3.2.6 UnRegisterIOResource Method
Parameters
Name Type Access Description
sName BSTR [in] Name of the IO resource

The UnRegisterIOResource method unregisters the registered IO resource specified by the sName
parameter and restores the default IO resource used by RTS Server.

The UnRegisterIOResource method can be called from the “READY”, “FINISH”, “RUNNING”,
“HALTED” or “UNLOADED” state. The adapter must be first attached to the RTS Server. It is best to call
UnRegisterIOResource from the “UNLOADED” state. If UnRegisterIOResource is called with a TPS
loaded it will take effect only for the next TPS run. Detaching from the server or destroying the adapter
object will automatically unregister all registered resources. UnRegisterIOResource must be called only
before re-registering the resource.
Calling UnRegisterIOResource without successfully registering the resource first will generate an error.

3.3 ITpsServerData Interface

The ITpsServerData interface is the default interface of the TPS Server object. The ITpsServerData
interface derives from the ITpsServerEx interface. In addition to the functionality exposed by ITpsServerEx
the ITpsServerData interface exposes methods to add and remove watch variables to enhance debug
capabilities of the TpsServer.

3.3.1 IDL Description
typedef enum RtsAxWatchContext {
 RTSAX_NOTIFY_WHEN_VAR_CHANGES = 0,
 RTSAX_NOTIFY_WHEN_VAR_EQUALS_ARG = 1,
 RTSAX_NOTIFY_WHEN_VAR_DIFFERS_ARG = 2,
 RTSAX_NOTIFY_AND_HALT_WHEN_VAR_CHANGES = 3,
 RTSAX_NOTIFY_AND_HALT_WHEN_VAR_EQUALS_ARG = 4,
 RTSAX_NOTIFY_AND_HALT_WHEN_VAR_DIFFERS_ARG = 5,
} RtsAxWatchContext;

typedef enum RtsAxRunBlockContext {
 RUN_FROM_BLOCK = 0,
 RUN_THIS_BLOCK = 1,
 RUN_TOENDOFCURRENT_BLOCK = 2,
} RtsAxRunBlockContext;

[
 object,
 uuid(3F6B2943-F0DA-11D2-BBB0-00C0268914D3),
 dual,
 helpstring("ITpsServerData Interface"),
 pointer_default(unique)
]

interface ITpsServerData : ITpsServerEx
{
 [id(16), helpstring("method AddWatchVariable")]
 HRESULT AddWatchVariable([in] BSTR sName,
 [in] IUnknown* pUnkAddressAndTypeInformation,
 [in] RtsAxWatchContext eRtsAxWatchContext,
 [in] BSTR sArgumentValue,
 [in] BSTR sReserved);
 [id(17), helpstring("method RemoveWatchVariable")]
 HRESULT RemoveWatchVariable([in] BSTR sName);
 [id(18), helpstring("method RemoveAllWatchVariables")]
 HRESULT RemoveAllWatchVariables();
 [propput, id(19), helpstring("property Visible")]
 HRESULT Visible([in] VARIANT_BOOL newVal);
 [propget, id(20), helpstring("property RunBlockContext")]
 HRESULT RunBlockContext([out, retval] RtsAxRunBlockContext* pVal);
 [propput, id(20), helpstring("property RunBlockContext")]
 HRESULT RunBlockContext([in] RtsAxRunBlockContext newVal);
 [propget, id(21), helpstring("property EntryBlocks")]
 HRESULT EntryBlocks([out, retval]VARIANT* psaBlockStatements);
};

3.3.2 AddWatchVariable Method
Parameters
Name Type Access Description
sName BSTR [in] Name of the variable to be

watched.
pUnkAddressAndTypeInformation IUnknown* [in] Interface pointer to the variable’s

address and data type information
eRtsAxWatchContext RtsAxWatchContext [in] Declares a context to watch a

variable.
sArgumentValue BSTR [in] To be used with

eRtsAxWatchContext above.
sReserved BSTR [in] Unused.

The AddWatchVariable method is called to add watch variables during debugging a TPS project. Specify a
name, Address and Type Information object (described later in the document), valid context (from the
enumerations defined) and an argument value.

Symbol Value Description
RTSAX_NOTIFY_WHEN_VAR_CHANGES 0 Notify when RTS variable changes.
RTSAX_NOTIFY_WHEN_VAR_EQUALS_ARG 1 Notify when RTS variable equals

sArgumentValue.
RTSAX_NOTIFY_WHEN_VAR_DIFFERS_ARG 2 Notify when RTS variable differs

from sArgumentValue.
RTSAX_NOTIFY_AND_HALT_WHEN_VAR_CHANGES 3 Notify and halt when RTS variable

changes.
RTSAX_NOTIFY_AND_HALT_WHEN_VAR_EQUALS_ARG 4 Notify and halt when RTS variable

equals sArgumentValue.
RTSAX_NOTIFY_AND_HALT_WHEN_VAR_DIFFERS_ARG 5 Notify and halt when RTS variable

differs from sArgumentValue.

3.3.3 RemoveWatchVariable Method
Parameters
Name Type Access Description

sName BSTR [in] Name of the watch variable that is to be removed.
Call this method with the name of the watch variable that is to be removed.

3.3.4 RemoveAllWatchVariables Method
Call this method to remove all watch variables added while debugging the TPS Project.

3.3.5 Visible Property
Type Access Description
VARIANT_BOOL Write Controls visibility of the RTS Application

The Visible property controls the visibility of the RTS Application. Clients of the TPSServer /
TPSServerLite can now control display of the RTS Application through this property.

3.3.6 RunBlockContext Property
Type Access Description
VARIANT_BOOL Read-Write Used with the RtsAxRunBlockContext.

The RunBlockContext property controls the context in which the RTS Executive should run an Entry Block.
This context is used by the RTS Executive when the RunBlock method is invoked. By default, the TPS
Server sets up the RunBlockContext to RUN_THIS_BLOCK.

Symbol Value Description
RUN_FROM_BLOCK 0 Run the RTS Executive from the Entry Block specified

unto the end of the ATLAS program.
RUN_THIS_BLOCK 1 Run the RTS Executive for just the current Entry Block

specified.
RUN_TOENDOFCURRENT_BLOCK 2 Run the RTS Executive from its current location until the

end of the current Block.

3.3.7 EntryBlocks Property
Type Access Description
VARIANT* Read Returns a SafeArray of VT_I4 (integers), each integer specifies

the Statement Number for the Entry Block.

The EntryBlocks property provides access to the Entry Block table of the RTS Executive. Number of
elements of the SafeArray returned match exactly to the number of Entry Blocks in the ATLAS program.
Each integer value within the SafeArray corresponds to the Entry Block Statement Number in the ATLAS
program.

3.4 TpsServer CoClass

3.4.1 IDL Description
[
 uuid(3F6B2940-F0DA-11D2-BBB0-00C0268914D3),
 helpstring("TpsServer Class")
]
coclass TpsServer
{
 [default] interface ITpsServerData;
 [default, source] dispinterface _IRtsDataEvents;

};

3.4.2 UML Design

Figure 4 TPS Server class design

3.5 TpsServerLite CoClass

The TpsServerLite co-class is a lighter version of the TpsServer co-class. Unlike the TpsServer, this co-
class does not populate the IOSubSystem with the RESULTS and PARAMETERS data resources.

3.5.1 IDL Description
[
 uuid(3F6B2970-F0DA-11D2-BBB0-00C0268914D3),
 helpstring("TpsServerLite Class")
]
coclass TpsServerLite
{

 [default] interface ITpsServerData;
 [default, source] dispinterface _IRtsDataEvents;
};

3.5.2 UML Design

Figure Error! Bookmark not defined. TpsServerLite class design

3.6 _IRtsDataEvents Events Interface

The RTS COM adapters fire a number of standard COM events. Using events the server notifies the client
when events of interest occur. For implementation, a standard COM solution is used involving connection
points and sink interfaces. The client must provide the sink object implementing the required interface. The
RTS COM adapters implement the IConnectionPointContainer interface.

In order to connect the two objects, the client must call the Advise method of the IConnectionPoint
interface for the connection point of interest. The number of sink objects receiving notification is not
subject to any restrictions. To discontinue notification, the client can use the UnAdvise method. The
mechanism is similar with registering a callback function; in this case it is a callback interface. For details,
see the COM specification for outgoing interfaces, connection points and sink objects.

The _IRtsDataEvents interface groups the events related to RTS activity.

3.6.1 IDL description
[
 uuid(3F6B2909-F0DA-11D2-BBB0-00C0268914D3),
 helpstring("_IRtsDataEvents Interface")
]
dispinterface _IRtsDataEvents
{
 properties:
 methods:
 [id(1), helpstring("method OnRtsTps")]
 HRESULT OnRtsTps([in] BSTR strTps);
 [id(2), helpstring("method OnRtsFaultCounter")]
 HRESULT OnRtsFaultCounter([in] long lFC);
 [id(3), helpstring("method OnRtsTestLimits")]
 HRESULT OnRtsTestLimits([in] IDispatch* pTest);
 [id(4), helpstring("method OnRtsTestValue")]
 HRESULT OnRtsTestValue([in] IDispatch* pTest);
 [id(5), helpstring("method OnRtsState")]
 HRESULT OnRtsState([in] long lState);
 [id(6), helpstring("method OnRtsContext")]
 HRESULT OnRtsContext([in] long lContext);
 [id(7), helpstring("method OnRtsDevice")]
 HRESULT OnRtsDevice([in] BSTR strDevice);
 [id(8), helpstring("method OnRtsDelay")]
 HRESULT OnRtsDelay([in] double dTime);
 [id(9), helpstring("method OnRtsMiEnable")]
 HRESULT OnRtsMiEnable([in] VARIANT_BOOL bEnable);
 [id(10), helpstring("method OnRtsOutput")]
 HRESULT OnRtsOutput([in] BSTR strMsg);
 [id(11), helpstring("method OnRtsDisplay")]
 HRESULT OnRtsDisplay([in] BSTR strMsg);
 [id(12), helpstring("method OnRtsInfo")]
 HRESULT OnRtsInfo([in] BSTR strMsg);
 [id(13), helpstring("method OnRtsWarning")]
 HRESULT OnRtsWarning([in] BSTR strMsg);
 [id(14), helpstring("method OnRtsError")]
 HRESULT OnRtsError([in] BSTR strMsg);
 [id(15), helpstring("method OnVariableChange")]
 HRESULT OnVariableChange([in] BSTR name,

 [in] BSTR value,
 [in] long vlc);

 [id(16), helpstring("method OnVariableTypeChange")]
 HRESULT OnVariableTypeChange([in] BSTR name,

 [in] long value,
 [in] long vlc);

};

3.6.2 OnRtsTps Event
Parameters
Name Type Access Description
strTps BSTR [in] Full TPS path

The OnRtsTps event is fired when the Tps property changes. The strTps parameter is null when the TPS
was unloaded or the loading failed.

3.6.3 OnRtsFaultCount Event
Parameters
Name Type Access Description
lFC long [in] TPS fault counter

The OnRtsFaultCount event is fired when the FaultCount property changes.

3.6.4 OnRtsTestLimits Event
Parameters
Name Type Access Description
pTest IDispatch* [in] Pointer to the IDispatch interface of the test object.

The OnRtsTestLimits event is fired during a test when test limits are available. For a signal-based test, this
notification occurs before the actual measurement. The provided test object contains only the limits and
dimension information.

3.6.5 OnRtsTestValue Event
Parameters
Name Type Access Description
pTest IDispatch* [in] Pointer to the IDispatch interface of the test object.

The OnRtsTestValue event is fired during a test when the comparison is executed. For a signal-based test,
this notification occurs after the actual measurement. The provided test object is fully populated.

3.6.6 OnRtsState Event
Parameters
Name Type Access Description
lState long [in] The new state.

The OnRtsState event is fired when the RTS state changes.

3.6.7 OnRtsContext Event
Parameters
Name Type Access Description
lContext long [in] The new context.

The OnRtsContext event is fired when the RTS context is changed.

3.6.8 OnRtsDevice Event
Parameters
Name Type Access Description
strDevice BSTR [in] The new active device

The OnRtsDevice event is fired when the current device changes.

3.6.9 OnRtsDelay Event
Parameters
Name Type Access Description
dTime double [in] Remaining delay amount in seconds

The OnRtsDelay event is fired when the RTS is delaying. The OnRtsDelay event is fired periodically
during a delay notifying the client of the delay progress.

3.6.10 OnRtsMiEnable Event
Parameters
Name Type Access Description
bEnable VARIANT_BOOL [in] Desired action - enable or disable

The OnRtsMiEnable event is fired when the Manual Intervention action is enabled or disabled

3.6.11 OnRtsOutput Event
Parameters
Name Type Access Description
strMsg BSTR [in] Text to display

The OnRtsOutput event is fired by ATLAS OUTPUT, to ‘DISPLAY’ statements.

3.6.12 OnRtsDisplay Event
Parameters
Name Type Access Description
strMsg BSTR [in] Text to display

The OnRtsDisplay event is fired by using the display function in MACRO or CEM device drivers.

3.6.13 OnRtsInfo Event
Parameters
Name Type Access Description
strMsg BSTR [in] Information message to display

The OnRtsInfo event is fired by information messages.

3.6.14 OnRtsWarning Event
Parameters
Name Type Access Description
strMsg BSTR [in] Warning message to display

The OnRtsWarning event is fired by warning messages.

3.6.15 OnRtsError Event
Parameters
Name Type Access Description
strMsg BSTR [in] Error message to display

The OnRtsError event is fired by error messages.

3.6.16 OnVariableChange Event
Parameters

Name Type Access Description
name BSTR [in] Name of the RTS variable under watch.
value BSTR [in] Value f the RTS variable under watch.
vlc long [in] Address of the AIL instruction that caused the

variable value to be changed.

The OnVariableChange event is fired when a RTS variable under watch changes.

3.6.17 OnVariableTypeChange Event
Parameters
Name Type Access Description
name BSTR [in] Name of the RTS variable under watch.
value Long [in] Value f the RTS variable under watch.
vlc long [in] Address of the AIL instruction that caused the

variable type to be changed.

The OnVariableTypeChange event is fired when the type of the variable under watch changes. Value
would correspond to a type within the RtsVarTypes enumeration defined later.

4 Additional COM Components, Interfaces and Types

4.1 IAddressInformation

The interface is used to define address information and how ATE variables are stored and manipulated in
the RTS adapters.

4.1.1 IDL Description
[
 object,
 uuid(3F6B2981-F0DA-11D2-BBB0-00C0268914D3),
 dual,
 helpstring("IAddressInformation Interface"),
 pointer_default(unique)
]
interface IAddressInformation : IDispatch
{
 [propget, id(1), helpstring("property Vad")]

HRESULT Vad([out, retval] long *pVal);
 [propget, id(2), helpstring("property FieldFrom")]

HRESULT FieldFrom([out, retval] long *pVal);
 [propget, id(3), helpstring("property FieldLength")]

HRESULT FieldLength([out, retval] long *pVal);
 [id(4), helpstring("method Populate")]
 HRESULT Populate([in] long lVad,

 [in] long lFieldFrom,
 [in] long lFieldLength);

};

4.1.2 Vad Property
Type Access Description
Long Read-Only Virtual address location of the variable

Use this property to get the virtual address of a variable in the RTS.

4.1.3 FieldFrom Property
Type Access Description
Long Read-Only Field description start bit

Use this property to define the description start bit. It describes storage of digital fields which is supported
by specific ATE subsets.

4.1.4 FieldLength Property
Type Access Description
Long Read-Only Field length (in bits) of the variable

Use this property to define the Field length of variable in RTS. It describes storage field length of digital
fields which is supported by specific ATE subsets.

4.1.5 Populate Method
Parameters
Name Type Access Description
lVad long [in] Virtual address location of the variable
lFieldFrom long [in] Field description start bit
lFieldLength long [in] Field length (in bits) of the variable

Use this method to update variables parameters. lFieldFrom and
lFieldLength are only used in defining storage fields of digital variables which is supported by
specific ATE subsets.

4.2 AddressInformation CoClass

This co-class is the entity that maintains the watch variable information between two debug sessions.

4.2.1 IDL Description
[
 uuid(3F6B2980-F0DA-11D2-BBB0-00C0268914D3),
 helpstring("AddressInformation Class")
]
coclass AddressInformation
{
 [default] interface IAddressInformation;
};

4.2.2 UML Design

Figure Error! Bookmark not defined. AddressInformation class design

4.3 IAddressAndTypeInformation

The interface derives from IAddressInformation. It further defines the type of the watched variable.

4.3.1 IDL Description
typedef enum RtsVarTypes {
 RTSAX_TYPE_BOOL = 0,
 RTSAX_TYPE_INT = 1,
 RTSAX_TYPE_REAL = 2,
 RTSAX_TYPE_TEXT = 4,
 RTSAX_TYPE_CON89 = 6,
 RTSAX_TYPE_DIGITAL = 7,
 RTSAX_TYPE_CON85 = 9,
 RTSAX_TYPE_MASK = 0x0F,
 RTSAX_EXCESS_MASK = 0xF0,
 RTSAX_SIZE_MASK = 0xFF00,
} RtsVarTypes;

[
 object,
 uuid(3F6B2991-F0DA-11D2-BBB0-00C0268914D3),
 dual,
 helpstring("IAddressAndTypeInformation Interface"),
 pointer_default(unique)
]
interface IAddressAndTypeInformation : IAddressInformation
{
 [propget, id(5), helpstring("property TypeWord")]

HRESULT TypeWord([out, retval] unsigned short *pVal);
 [propget, id(6), helpstring("property TypeAsString")]

HRESULT TypeAsString([out, retval] BSTR *pVal);
 [id(7), helpstring("method Populate")]
 HRESULT Populate([in] long lVad,

 [in] long lFieldFrom,
 [in] long lFieldLength,
 [in] unsigned short ushTypeWord);

};

4.3.2 TypeWord Method
Parameters
Name Type Access Description
pVal unsigned short [out, retval] Value of the variable

This method retrieves the value of the variable as a word.

4.3.3 TypeAsString Method
Parameters
Name Type Access Description
pVal BSTR [out, retval] Value pointed to by the variable

This method retrieves the string pointed to by the variable.

4.3.4 Populate Method
Parameters
Name Type Access Description
lVad long [in] Virtual address location of the variable
lFieldFrom long [in] Field description start bit
lFieldLength long [in] Field length (in bits) of the variable
ushTypeWord Unsigned

short
[in] Value of the variable

The overloaded method of this interface is used to update variables parameters. lFieldFrom and
lFieldLength are only used in defining storage fields of digital variables which are supported by
specific ATE subsets.

4.4 AddressAndTypeInformation CoClass

4.4.1 IDL Description
[
 uuid(3F6B2990-F0DA-11D2-BBB0-00C0268914D3),
 helpstring("AddressAndTypeInformation Class")
]
coclass AddressAndTypeInformation
{
 [default] interface IAddressAndTypeInformation;
};

4.4.2 UML Design

Figure Error! Bookmark not defined. AddressAndTypeInformation class design

Note:
All additional interfaces, types and components referred by this document are described in the COM Utils,
IOSubsystem or RTS COM Adapters documents.

