TYX CORPORATION
Productivity Enhancement Systems

Reference TYX 0051 8
Revision 1.1b

Document PawslOHowTo.doc
Date October 9, 2003

Text I/O exe resource

without MEC tutonal

This document will help with making the Text input-output interface without MFC.

Studio version used:

1.20.0

Requirements:
Studio 1.10.x or above. Backward and forward compatibility between the COM build with one version of the Studio

library and other Studio version is not guarantied.

Introduction:

First we will address the issue of what to do with the exe that we wish to link to the Atlas with a Text 10. Other
documents will address the issue of using the support of Binary 10 and the usage of GUI within the COM environment.
Then we will see the Atlas and what it takes with a 716.89 environment to make use of it.

DIl versus Exe:
1. 1. Advantage of Dlls versus Exe:

e The DIl uses fewer resources than the Exe.

e The DIl can easily remain on top of the Wrts.

e The accelerators are directly passed on to the Wrts without additional code. When the Exe has the
focus, it will need some code in order to pass on the accelerator destined for the Wrts.

e The message loop for painting... is taken care of by the Wrts. For the Exe, the code needs to be placed
into the Exe which may be done by the wizard to some extent.

e The DIl will be slightly faster than the Exe. This will however only make a difference for repeated
transfer of a large amount of data.

2. 2. Advantage of the Exe versus DII:

1 1

e The Exe is more isolated than the DIl and if it crashes, it will not affect the Wrts. This may be an issue if
the Exe links to code that is not stable.

e The Exe can be moved in front or behind the Wrts at will.

e The Exe can be run remotely.

When generating a COM .exe with MSVC 6++

e o FromFile/New..., selectan ATL COM AppWizard and select a project name as seen below:

Hew

Filee Projects | Wwiorkzpaces | Other Documents |

?| Chuzter Resource Type “Wizard
g| Cuztom Apphaizard

A Extended Stored Proc \wizard
£ | 54F] Estenzion Wizard
Makefile

#m MFC Active Controlwizard
|8 MFC Appiwizard (dl])

LB AP Appwizard [exe)

@\ Mew Databaze Wizard

i'§ Utility Praject

=] 4in32 Application
jWinSE Conzole Application
| %] 'win32 Dynamic-Link Library

Jl |

% | win32 Static Library

Froject narne:

 THButtonZ

Location:

{D:4Proiv TMB uttan2

% Create new workspace

™ 4dd to curent workspace

I™| Dependenemaf;

ITmEuth:nn

Platforms:

IWin32

o

[o |

Cancel

Click on OK

ATL COM AppWwizard - Step 1 of 1

Propertie

a1

Then select Executable (EXE)

Thiz "wizard creates an ATL project withaut any
initial COM objects. After completing this ‘Wizard,
uze the Mew ATL Object command franm
Clazstiew to zpecify the tupe of object you would
lik.e tor add ta this project.

Semver Type
¢ Dwnamic Link Library [DLL]

" Semvice [ExE|

™| &l Evmenging b prow/ st cade

o Lo
e R R el | I
r ™| Suppant b S
¢ Back | i = | Finizh I Cancel

ATL Object Wizard Properties [7] |

Marmes | Attributes I

— C++

Shart M ame: IButtu:unF!es-:uuru:el |

— COM

Clazs: IEB uttonF ezource

H File: IE uttonR esource.h

CPP File: IE uttonR ezource.cp

Interface:

CoClass: IEuttu:unFi ezoUrce

IIButtu:unH Ez0Lce

Type: IEuttu:unFi ezource Cla

Frog 10 ITh-'IEuttu::nsE. Button

k. I Cancel

e Click on Finish on this window, and OK on the window that will appear after that.

e From the Studio, select insert/New ATL Object...

Select Simple Object as seen below and click on Next.

ATL Object Wizard EH |

LCategory

Contrals
Mizcelaneous
Data Access

Objects

.

Cormpatient

Simple Object sl Eagulits,

Activer Server MMC Snapln

MHest >

a

Internet
Ewxplar...

@_

Transan:tl...

-

Cancel |

e You will then see the following window. In the Short name: box, enter the name of the ATL object that you wish to
create. The other boxes will fill in by themselves. In this case, we chose the name ButtonResource. Don’t chose
“lOResource” because it’s already used by the system and it will prevent you from building the COM exe.

Also, take note of the name in Prog ID: In this case TMButtons2.ButtonResource (exe name followed by the short name).
This will be used as an entry in the Wrts options.

e Inthe list of attributes, as shown below, all defaults can be acceptable. You may want to add the option of Support

IsupportErrorinfo.

These options make more sense for those that are familiar with COM.

=l THMButtons? claszes
: i CEuttonB esource

K|
----- = |ButtonResource
I |
------ & Abart() —

Elect an interface from this project, cancel

------ & CButtonB esourcel]

------ & Cloze(]

------ & Fluzh()

...... & oet_EoffYARIANT_BOOL *pval)

...... & gef_Mode[LOMG *pal)

------ & get_nameESTR “pval)

------ § get_Position[LOMG “pval]

------ & get_Size[LOMG *pval]

...... & get_State[LOMG *pval]

...... & [nputlLONG IType, BSTR sFmt, BSTR “pial]
------ & InterfaceSupportsErarlnfo[REFID riid)
...... § Open(BSTR betrdame, LOMG Mode)
------ & OutputlBSTR val)

------ & Seek[LOMG 10fftzet, SHORT =0rigin)
- ™8 CExeModule

----- == |ButtonB esource

-1 Globals

L

B8 ClazsView I Hesu:uuru:e"v"iewl File"»-"iewl

e Click on OK.

e Now you need to link the project to an interface, which in this case relates to the Wrts capabilities. In the workspace,
you should right-click on the Class that starts with C<short name>, where short name is from the ATL Object Wizard
Properties. In our case CButtonResource as seen below.

e After right clicking on CbuttonResource, Select Implement interface...
e You will get the following message and then click on OK.

e Select the RtslO for Wrts input-output library and then click on OK. If you do not see RtslO, it’s because you are
using a version of the TY X Stutio that is older than 1.10.x.

e In the following window, you need to check 11OResouce and ItextResource (for text 10 resources) and then click on
OK.

o Now you will need to modify the source of what has been made available to you. In our case, double click on
CButtonRessource under ClassView, or C<short name> as shown below:

e o Thiswill give you the following text:

// ButtonResource.h : Declaration of the CButtonResource

#ifndef _ BUTTONRESOURCE_H_
#define _ BUTTONRESOURCE H_

#include "resource.h" // main symbols
#import "c:\usr\tyx\com\rtsio.dll" raw_interfaces_only, raw_native_types, no_namespace, named_guids
L1111 77777777777777777777777777777777777777/////////////7///7//7777777777/7777/
// CButtonResource
class ATL_NO_VTABLE CButtonResource :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CButtonResource, &CLSID_ButtonResource>,
public ISupportErrorinfo,
public IDispatchlmpl<lButtonResource, &l1I1D_IlButtonResource, &LIBID_TMBUTTONS2Lib>,
public Il10Resource,
public ITextResource

{
public:
CButtonResource()

{

b
DECLARE_REGISTRY_RESOURCEID(1DR_BUTTONRESOURCE)
DECLARE_PROTECT_FINAL_CONSTRUCT(Q)
BEGIN_COM_MAP(CButtonResource)

COM_INTERFACE_ENTRY (1ButtonResource)

COM_INTERFACE_ENTRY (1Dispatch)

COM_INTERFACE_ENTRY (1SupportErrorinfo)

COM_INTERFACE_ENTRY (1 10Resource)

COM_INTERFACE_ENTRY (1 TextResource)
END_COM_MAPQ)

// 1SupportsErrorinfo
STDMETHOD(InterfaceSupportsErrorinfo) (REFIID riid);

// 1ButtonResource

public:

// 110Resource
STDMETHOD(Open) (BSTR bstrName, LONG IMode)
t return E_NOTIMPL;
%TDMETHOD(Close)()
t return E_NOTIMPL;
%TDMETHOD(FIush)()
t return E_NOTIMPL;
%TDMETHOD(Abort)()
t return E_NOTIMPL;
%TDMETHOD(Seek)(LONG 10ffset, SHORT sOrigin)
t return E_NOTIMPL;
%TDMETHOD(get_name)(BSTR * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(get_Mode) (LONG * pval)
{

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(get_Size) (LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
by
STDMETHOD(get_Position) (LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
}
STDMETHOD(get_Eof) (VARIANT_BOOL * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(get_State) (LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;

by

// 1TextResource
STDMETHOD(Input) (LONG IType, BSTR sFmt, BSTR * pval)
{

if (pval == NULL)
return E_POINTER;
return E_NOTIMPL;
¥
STDMETHOD(Output) (BSTR val)
{
return E_NOTIMPL;
3
}:
#endif //___BUTTONRESOURCE_H_

e o What you will want to do first is to change the exit code for all of those functions, from E_NOTIMPL which is the
return for “Error, not implemented”, to S_OK for an ok return value.
0 For example: For the Open and Close functions, you will get:
STDMETHOD(Open) (BSTR bstrName, LONG IMode)
{
return S_OK; // Changed
b
%TDMETHOD(CIose)()

} return S_OK; // Changed

Those particular functions are called by the Wrts upon loading and unloading the program with the Wrts. This is where you
would put the code that you wish to see executed when the Wrts loads and unloads an Atlas program.

e o You will also want to delete the following line on line 16:

public Il10Resource,

in order to avoid compilation problems.

e You will also want to return an end of file true statement in the get_Eof method:

STDMETHOD(get_EoF) (VARIANT _BOOL * pval)

if (pval == NULL)

return E_POINTER;
*pVal = VARIANT_TRUE; // Added
return S_OK;

e The code below is where the text input and output are being handled. Some code has been added in order to achieve
the goal that we have set ourselves in this example. Typically, you will implement your own code as a function of your own
requirements:

// 1TextResource
STDMETHOD(Input) (LONG IType, BSTR sFmt, BSTR * pVal)

if (pval == NULL)
return E_POINTER;

*pval = ::SysAllocString(L"TRUE™); // Added
return S_OK; // Changed

T
STDMETHOD(Output) (BSTR val)

}

USES_CONVERSION; // This line and line below are added
: :MessageBox(NULL, OLE2T(val), _T("ButtonResource’™), MB_OK | MB_ICONINFORMATION);
return S_OK; // Changed

You can note that in this case, the return of the input is going to be a string containing “TRUE”. Your code there would
determine the exact content of that string.

The Output on the other hand will display the content of the output string from the Atlas.

e You are now ready to build the COM exe with the option Build/Build, by using the icon bar, or by pressing F7.

e You may register your exe manually or do it from within your project in the Custom Build setting.
To register is manually, you need to execute TMButton2 /RegServer from a command line from the TMButton2.exe
location.

e Note for advanced users: If you are not an advanced COM user, you may skip this note.

If you want to make use of more than one 10 resource, such as text and binary, you may have a compilation problem unless
you correct some code.

In the file <Short Name>.h from the ATL Object Wizard Properties, ButtonRes.h in our case, in the COM_MAP
section, you may have an uncertainty about the mapping between the 11OResource and the resource that you want to use.
In our case, you will have the code below:

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY (1ButtonRes)
COM_INTERFACE_ENTRY (IDispatch)
COM_INTERFACE_ENTRY (1SupportErrorinfo)
COM_INTERFACE_ENTRY (I1BinaryResource)
COM_INTERFACE_ENTRY (1 10Resource)

END_COM_MAPQ)

If you had another resource such as text, you will have to tell IIOResouce which resource to use in order to satisfy the

compiler. To do that, you will need to change the COM_INTERFACE_ENTRY for IIOResource to the line below.

BEGIN_COM_MAP(CButtonRes)
COM_ INTERFACE_ENTRY (1ButtonRes)
COM_INTERFACE_ENTRY (IDispatch)
COM_INTERFACE_ENTRY (1SupportErrorinfo)
COM_INTERFACE_ENTRY2(110Resource, IBinaryResource) // Necessary to point to the
// desired class since there are two of them (Text and Binary).
COM_INTERFACE_ENTRY (1 TextResource)
COM_INTERFACE_ENTRY (1BinaryResource)
END_COM_MAP()

e o That will ensure that your code will build properly, and you may then make use of both 10 resource types.

2 2 Whattodointhe TYX Studio?

e o Atthis point, you will need to have an Atlas program that makes use of that COM resource and to setup the Wrts in
order to link that Atlas 10O device to you COM exe.

21 2.1 Samplefor Atlas 416:

You can note that for IEEE416 Atlas, you may use the same COM resource for input and output only with newer versions of
416 and only with a Binary 10. So, there is no 416 sample code for this tutorial.

2.2 2.2 Sample for Atlas 716-89/95:

001000 BEGIN, ATLAS PROGRAM "TM_BUTTONS* $

Cs$
10 DECLARE, VARIABLE, "TMSTATUS®" IS STRING (80) OF CHAR

20 DECLARE, VARIABLE, "OUT" IS FILE OF TEXT
Cs$
E010000 OUTPUT, C"\LF\\HT\START OF MMEDIA SAMPLE PROGRAM\LF*
Cs$
C

Cs$
10 ENABLE, OUTPUT TO NEW C®"TM_BUTTON®, VIA "OUT"
20 OUTPUT, TO "OUT", C"Text Streaml23"$
30 DISABLE, "ouT"
Cs$
50 ENABLE, INPUT FROM C*TM_BUTTON®, VIA *OUT*
60 INPUT, FROM "OUT", INTO "TMSTATUS®
70 DISABLE, "OUT*"
80 OUTPUT, C"TMSTATUS =", "TMSTATUS" $

R - << S - B <

Cs$
999998 OUTPUT, C"THE END" $
999999 TERMINATE, ATLAS PROGRAM *TM_BUTTONS*® $

This atlas will simply do two things:
It will output a message box with the content “TMSTATUS” and it will input a string that has been hard-coded in the COM exe
as “TRUE”. That string that has been retrieved will be displayed in the WRTS.

You can note that for IEEE716.89/95 Atlas, you may use the same COM resource for input and output which is not necessarily
the case for IEEE416 (not all revisions in IEEE416 allow the usage of INPUT and OUTPUT) and IEEE716.

You will need to compile this Atlas and have it ready to run.

Note: In your Atlas code, on line 010020, if you leave a space between
twice, and the second time, with no parameter.

and “$”, you will enter the text output resource

2.3 2.3 Wrts Settings:

e o Now that Atlas is ready to run, you should launch the Wrts.
e ¢ Gointo Control/Options...

options x|

General I Resources I

Frinter Property Page |

BTS Property Pagesz

Rts GUI

[tdonitor Bus

™ Debugger Font... |

] 4 Cancel Apply Help

e o Now Click on RTS Property Pages and select IOSubsystem

Dialog |

Reszource name:

ProglD:

] |

Server Property Pages Properties £|

RTS General| RTS Log 10Subsystem |

R egistered rezources:

Fezource Mame | Progl[:l
FRIMTER Rzl 0. PrinterR ezource
SOUMD Rtzl0.5oundR esource

SPREADSHEET Rtel0.ExcelRezource
TW_BUTTOM Unknown ProglD
YIDED Rtzl0 WideoRezource
WOARMIM G Rzl 0. T extPublizher

Rtzl0 FileResource

4| | b

Add | LChanhge | Bemove | Properties |

k. I Cancel | Smply | Help |

e o Younow need to create the link between your Atlas 10 resource and the COM resource that you wish to link to. Go
into the list of Resource Names. If TM_BUTTON is already there with an unknown ProglID, remove it by selecting it and

by pressing Remove.
e o Press Add and you will see the following window:

e o The Resource name is the one that you have defined in your Atlas. In out case TM_BUTTON.
e o Your ProglD will be the one that you will have remembered from Atlas Object Wizard Properties in the previous

task of generating the COM exe source.
¢ Inthis case, you will want to use TMButtons2.ButtonResource:

Add Resource x|

Resource name:
ITM_BLITTEIN

Prag 1D:
IT ME uttonZ. Buttonf esounce]

Cancel |

e o Click on OK on this window and the one that will appear after that.
e o YourWrts is now ready to link your Atlas 10 resource to your COM exe.

Note: The effect will take place the next time you will reopen the Wirts, so close the Wrts and reopen it.

You may now run the Atlas program and the COM exe will be invoked when necessary. The location of the COM exe does not
matter because it has been registered in your system.
3 3 Howtodebugthe Com exe?

e o First, you put the breakpoints where you want them in your exe COM source code. You would now run the COM exe
in debug mode from MSVC++ by going into Build/Start debug/Go or by pressing F5.
e o Now you would go into the TYX studio and run the Wrts.

The run time system would execute until it used the 10 Com exe that you have running in debug mode. The execution of the
Wrts would stop at your breakpoints in the COM exe source.

