
TYX Corporation

Productivity Enhancement Systems

Reference TYX_0051_2
Revision 1.1
Document MFCClient2ForTpsServer.doc
Date January 21, 2003

MFC Client with ActiveX
control for TpsServer

The purpose of this document is to write a client for the TpsServer.

Knowledge of MFC and COM is recommended, but not required. For those that have
questions about MFC and/or COM, I would recommend that they refer to literature that
addresses those issues since this document will not attempt to teach you either one even if
it will provide a lot of details on how to make this client sample work.

The usage of the TpsServer will be asynchronous.

It will allow the client to access the TpsServer functionality, and it will also process the
notifications from the TpsServer.

Note: This document differs from the document ref TYX_0051_1 in that it uses an
ActiveX control for the edit window rather than a simple edit box. With this ActiveX
control, the display will take in consideration the ASCII characters and interpret them
correctly.

The client will include an MFC GUI.

The commands to the Wrts will go directly to the TpsServer.

The notification that comes from the TpsServer will go through a COM Sink client.

Notes:

 It would be possible for the Wrts to notify the MFC GUI directly. This
architecture is however considered to be the correct way to access a dialog.

 This MFC dialog is a sample. You may change this sample to meet your
requirements. You will be however likely to reuse the COM object.

TpsServer

MFC GUI dialog

COM Sink object

Client

We will first generate the dialog and allow the MFC GUI dialog buttons to control the
TpsServer.

As we generate the COM Sink object to deal with the notifications, we will add the
functionality that will allow for the COM Sink object to be generated and for the
connectivities to be made.

1 Creating the MFC GUI dialog
1.1 Adding Buttons

You will want to create a new MFC AppWizard (exe).

The name will be WrtsClient

Click on OK.

Select Dialog based

Click on Next >.

Unselect ActiveX Controls and About box.

And then press on Next >.

Include MFC statically in order to be less dependent upon the OS environment. This
would be a necessary step for usage of the client on an embedded system. For a complete
OS, you may be able to use MFC dynamically in order to generate a smaller exe.

In our case, we will select As a statically linked library.

We can press Next > and accept the default class name.

Press Finish.

Click OK on the New Project Information window that follows.

You should have access to the following window:

Our first step is to verify that the code builds and runs.

The purpose at this point is to delete the unnecessary buttons and add the ones that we
want to support.

 Select the OK button by left clicking on it in the dialog box, and press delete.
 Select TODO: … by left clicking on it in the dialog box, and press delete.
 We will move the Cancel button. To rename the caption, right click on the

Cancel button and select Properties. Change the caption to CLOSE and close

the window. It this window, you could also change the ID if you wanted. We will
leave the current one for CLOSE.

 We now want to add some buttons with the following ID: and the Caption:

 Select the button from the toolbar and drag and drop a button onto the dialog
window. Copy and paste this button 5 time and change the properties of those
buttons to match the content of the following table.

ID: Caption:
IDC_RUN RUN
IDC_RESET RESET
IDC_HALT HALT
IDC_MI MI
IDC_LOAD LOAD
IDC_UNLOAD UNLOAD

 Align the buttons as needed.
 You should have a dialog box that may look like this one.

Make sure that you can build without errors and run the exe.

We will now add the functionality to the dialog box.

1.2 Connecting to the TpsServer
The purpose of what we want to do now is to load the TpsServer when you open the
client. We will want to unload when we close the client.

For this, we will add some code that you will want to add, no matter what your client
looks like:

 In order to give visibility throughout the code, you will want to add the following
at the bottom of the StdAfx.h file. The new code is black and the existing code is
gray:

#include <afxwin.h> // MFC core and standard components

#include <afxext.h> // MFC extensions

#include <afxdtctl.h> // MFC support for Internet Explorer 4
Common Controls

#ifndef _AFX_NO_AFXCMN_SUPPORT

#include <afxcmn.h> // MFC support for Windows Common
Controls

#endif // _AFX_NO_AFXCMN_SUPPORT

// New Lines added by TYX

#import "C:\usr\tyx\com\RtsAx.dll" raw_interfaces_only \

 raw_native_types, named_guids rename_namespace("RTSAX")

#include <atlbase.h>

void handleError(HRESULT hr);

//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

Please note that the path to the RtsAx.dll should be the one that you have on your
computer. The #include and the #import are necessary. The handleError will
contain a function that will handle errors. The existence of this function is not
vital, but the function that we propose and it’s content are highly recommended.

 The code for the handleError will be placed in the StdAfx.cpp file in order to be
accessed from anywhere:

#include "stdafx.h"

void handleError(HRESULT hr)

{

 if (SUCCEEDED(hr)) return;

 USES_CONVERSION;

 CComPtr<IErrorInfo> pErrorInfo;

 CString errMsg;

 if (::GetErrorInfo(0, &pErrorInfo) == S_OK)

 {

 CComBSTR bstrDscr;

 if (SUCCEEDED(pErrorInfo->GetDescription(&bstrDscr)))

 errMsg.Format(_T("COM Error: 0x%08X %s"), hr, OLE2T(bstrDscr));

 else

 errMsg.Format(_T("COM Error: 0x%08X"), hr);

 }

 else

 {

 // ::GetErrorInfo may return S_FALSE

 TCHAR* pszMsg = NULL;

 DWORD nChars = ::FormatMessage(

 FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM,

 NULL, hr, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),

 (LPTSTR)&pszMsg, 0, NULL);

 if (nChars)

 errMsg.Format(_T("COM Error: 0x%08X %s"), hr, pszMsg);

 else

 errMsg.Format(_T("COM Error: 0x%08X"), hr);

 // Free the buffer.

 if (pszMsg != NULL)

 ::LocalFree((HLOCAL)pszMsg);

 }

 // Display the com error:

 ::MessageBox(NULL, errMsg, _T("Error"), MB_OK);

}

 In the WrtsClientDlg.h file, you will want to create a smart pointer by adding the
following code:

 // Generated message map functions

 //{{AFX_MSG(CWrtsClientDlg)

 virtual BOOL OnInitDialog();

 afx_msg void OnPaint();

 afx_msg HCURSOR OnQueryDragIcon();

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 CComPtr<RTSAX::ITpsServerEx> m_pTpsServerEx;

};

 Now we can and want to CoCreate an instance of the TpsServer in the
WrtsClientDlg.cpp OnInitDialog method. We also want to Attach:

BOOL CWrtsClientDlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically

 // when the application's main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 // create TpsServer

 HRESULT hr = m_pTpsServerEx.CoCreateInstance(RTSAX::CLSID_TpsServer);

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 // attach tpsserver to wrts

 hr = m_pTpsServerEx->Attach();

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 return TRUE; // return TRUE unless you set the focus to a control

}

CoCreateInstance creates a TpsServer object.

Attach() is a method that will create an instance of the Wrts locally.

Note: If you wish to create an instance of the Wrts on a remote computer, you
will want to pass on the IP address of that computer as an parameter for Attach.
Here is an example of such call: m_pTpsServerEx-
>Attach(CComVariant(“192.168.100.164”));

Please note that you will need to set the proper privileges on the computers in order to
achieve this.

 Now we want to remember to release as the dialog gets destroyed. We will go to
View and select ClassWizard.

 For the CwrtsClientDlg class name, select the WM_DESTROY and press Add
Function. This will lead to the following window.

 Now we have a function name called OnDestroy where we can add the necessary
code to Release the Wrts instance. In that function located in WrtsClientDlg.cpp,
we want to add the following code:

void CWrtsClientDlg::OnDestroy()

{

 CDialog::OnDestroy();

 // TODO: Add your message handler code here

 m_pTpsServerEx.Release();

}

 Now we need to add CoInitialize and CoUninitialize. We could do this manually,
but this will be added by the wizard (to add a Simple ATL/COM object) in the
next step, so we would have to delete it before seeing it added by the wizard. So,

at this point, we will start with the next step which involves the TpsServer
notification to the client.

Summary:

Here, you have seen code associated to 2 separate issues:

o The code associated to this specific GUI sample. This code will change as
a function of your own GUI and may be entirely replaced.

o The code that you should have no matter what your GUI looks like that
enables the client to load the TpsServer, to Attach and Release the Wrts
instance. This code should be implement in your GUI no matter what.
Please note that you can easily attach the Wrts when you initiate the GUI
and you do not need a special button in your GUI to accomplish this task.
You will want to import and include the proper files in order to gain
access to the methods.

2 The sink object:
At this point, you will want to save your project and copy it. The wizard to insert an
ATL/COM object may crash and corrupt your project. If this happens, you will want to
delete the project and reuse a copy of the saved project and try it again.

2.1 Creating the object:

 Close the project.
 Delete the files that are in your project subfolder with the extensions: ncb, opt,

plg, aps and clw and the Debug folder.
 Open the project by double clicking on the file with the dsw extension.
 Go to Insert and select New ATL Object.

 Click on YES.
 You will be likely to see the following window:

 If you are lucky, you will see the following window directly. You can then skip
the steps until you see a picture of this window again:

 In the event that you see the error window, click on OK.
 Go into Build and select Clean.
 Go into File and select Save Workspace.
 Close the MSVC Studio.
 Delete the files with the extension ncb, aps and opt and the Debug folder.
 Double click on the file with the dsw extension.
 Go to Insert and select New ATL Object.
 Now you should see the following window:

 Select Simple Object and then on Next.
 You need to add the name for the object. In the Short Name edit box, we will add

TpsClientSink.

 In the Attributes tabs, we will want to select SupportISupportErrorInfo and
then click on OK.

 At this point the project should build without errors.

Note: Once build, we can run the project. You will see the dialog window:

If you go into the task manager, you will see that the Wrts is running in the background.

Once you have press CLOSE, you will see the Wrts being removed from the list in the
Task Manager.

Summary:

Adding CoInitialize and CoUninitialize can be done manually, but using the wizard to
insert an ATL/Com object, you can make your life easier. Inserting this object will be
needed later in this document anyway.

2.2 Adding functionality to the Buttons:

Go to View and select Class Wizard. You will see the following window

 Press on Yes and OK on the following window.

 You now have access to the Class Wizard window:

 Select IDC_HALT in the list of Object Ids and then BN_CLICKED and press
Add Function.

 Accept the default name by pressing OK

 Do the same for IDC_LOAD, IDC_MI, IDC_RESET, IDC_RUN,
IDC_UNLOAD and then click OK on the MFC ClassWizard.

 Those functions are added in the WrtsClientDlg.cpp file.
 We now want to add the code that is associated to the actions represented by the

content of the caption.
 In the OnHalt method, you will want to add the following code:

void CWrtsClientDlg::OnHalt()

{

 // TODO: Add your control notification handler code here

 HRESULT hr = m_pTpsServerEx->Halt();

 if (FAILED(hr))

 handleError(hr);

}

 Do the same for the other methods associated to the other buttons:

void CWrtsClientDlg::OnLoad()

{

 // TODO: Add your control notification handler code here

 HRESULT hr = m_pTpsServerEx->Load(CComBSTR(""));

 if (FAILED(hr))

 handleError(hr);

}

void CWrtsClientDlg::OnMi()

{

 // TODO: Add your control notification handler code here

 HRESULT hr = m_pTpsServerEx->ManualIntervention();

 if (FAILED(hr))

 handleError(hr);

}

void CWrtsClientDlg::OnReset()

{

 // TODO: Add your control notification handler code here

 HRESULT hr = m_pTpsServerEx->Reset();

 if (FAILED(hr))

 handleError(hr);

}

void CWrtsClientDlg::OnRun()

{

 // TODO: Add your control notification handler code here

 HRESULT hr = m_pTpsServerEx->Run();

 if (FAILED(hr))

 handleError(hr);

}

void CWrtsClientDlg::OnUnload()

{

 // TODO: Add your control notification handler code here

 HRESULT hr = m_pTpsServerEx->Unload();

 if (FAILED(hr))

 handleError(hr);

}

You will want to add those methods where it makes sense for you in your own GUI.

 At this point, you can build the project. Once built, you can run it. Press LOAD
and select a project on your computer. For the purpose of this test, you may want

to use a project that does nothing more than generate beeps since the Wrts will
only run in the background and you won’t be able to see any display at this point
in time.

 Press Run and the TPS will be run.
 Press CLOSE.

 At this point, we have demonstrated how to connect directly with the TpsServer. The
next step will allow for the client to catch all notifications from the TpsServer.

Notes:

o The buttons do not have access to the status of the Wrts so it is not possible at this
point to disable the buttons that the user should not press (such as RUN before
LOAD. Please note however, that if you press RUN before LOAD, an error will
be displayed thanks to handleError).

o You can also include the name and path of the PAW project in the Load method.
Here is an example:

m_pTpsServerEx->Load(CComBSTR("C:\\usr\\paws\\test.paw"));

Please note how each backslash is replaced by 2 backslashes inside the string.

Summary:

At this point in time, we are done accessing the methods that controls the Wrts directly. If
you do not care to catch the notifications sent by the TpsServer, you are done.

The locations where the methods depend on the GUI and those methods can be moved.

3 Catching the notifications sent by the
TpsServer:

This is the second step.

It has been initiated in step 2.1.

Now we will do the following:

 We will first worry about how the sink object is created by working on the sink
class. This is something that you will need regardless of what your GUI looks
like.

 Then we will add the property and the methods that allow the sink object to
communicate with the dialog class. This step is also necessary regardless of what
your GUI looks like. The sink object simply passes on the notifications from the
TpsServer to your dialog class.

 We will finally handle the notifications in the dialog class. How those
notifications are handled depend on your GUI.

3.1 The sink class and connecting the client to the
TpsServer:

 In the TpsClientSink.h, add the following code:

class ATL_NO_VTABLE CTpsClientSink :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CTpsClientSink, &CLSID_TpsClientSink>,

 public ISupportErrorInfo,

 public IDispatchImpl<ITpsClientSink, &IID_ITpsClientSink, &LIBID_WrtsClientLib>,

 public IDispEventImpl<1,

 CTpsClientSink,

 &RTSAX::DIID__IRtsBaseEvents,

 &RTSAX::LIBID_RTSAX, 1, 0>

{

Please note the “,” at the end of the line preceeding IDisEventImpl.

 I. The first parameter is the ID used. We start with 1. This ID will be used as
a parameter later in the document.

 II. The second argument is the name of the CoClass. This depends on the
name that you used. In our case, we will use CtpsClientSink.

 III. The third is the connection point to the interface. This parameter should be
fixed.

 IV. The forth is associated to the library. This parameter should be fixed.

 V. The last two are associated to the version of the TpsServer. These
parameters should remain 1 and 0 until further notice.

 We will now add the information for the mapping in the same file below the
above code:

BEGIN_COM_MAP(CTpsClientSink)

 COM_INTERFACE_ENTRY(ITpsClientSink)

 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY(ISupportErrorInfo)

END_COM_MAP()

BEGIN_SINK_MAP(CTpsClientSink)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0x1, OnRtsTps)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0x5, OnRtsState)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0x9, OnRtsMiEnable)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0xa, OnRtsOutput)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0xb, OnRtsDisplay)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0xc, OnRtsInfo)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0xd, OnRtsWarning)

 SINK_ENTRY_EX(1, RTSAX::DIID__IRtsBaseEvents, 0xe, OnRtsError)

END_SINK_MAP()

// ISupportsErrorInfo

 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

Please note that the first parameter is the same value as the first parameter for
IdispEventImpl just above.

 We need to copy the notification in the same file just below the code above.

// ISupportsErrorInfo

 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

 void __stdcall OnRtsState(long lState)

 {

 if (m_ClientHWnd)

 PostMessage((HWND)m_ClientHWnd, WM_USER + 1, eOnRtsState, lState);

 }

 void __stdcall OnRtsTps(BSTR pTps)

 {

 // extract the TPS name

 m_Tps = pTps;

 if (m_ClientHWnd)

 PostMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsTps, (long)(BSTR)m_Tps);

 }

 void __stdcall OnRtsMiEnable(VARIANT_BOOL varBool)

 {

 if (m_ClientHWnd)

 PostMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsMiEnable, (long)(BOOL)(varBool !=
VARIANT_FALSE));

 }

 void __stdcall OnRtsOutput(BSTR pMsg)

 {

 if (m_ClientHWnd)

 SendMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsOutput, (long)pMsg);

 }

 void __stdcall OnRtsDisplay(BSTR pMsg)

 {

 if (m_ClientHWnd)

 SendMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsDisplay, (long)pMsg);

 }

 void __stdcall OnRtsInfo(BSTR pMsg)

 {

 if (m_ClientHWnd)

 SendMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsInfo, (long)pMsg);

 }

 void __stdcall OnRtsWarning(BSTR pMsg)

 {

 if (m_ClientHWnd)

 SendMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsWarning, (long)pMsg);

 }

 void __stdcall OnRtsError(BSTR pMsg)

 {

 if (m_ClientHWnd)

 SendMessage((HWND)m_ClientHWnd, WM_USER + 1,

 eOnRtsError, (long)pMsg);

 }

protected:

 HWND m_ClientHWnd;

 CComBSTR m_Tps;

// ITpsClientSink

public:

};

 Now we want to add the enum for the third parameter in the SendMessage
above. We will do this in StdAfx.h:

extern CDemoSekasTpsClientModule _Module;

#include <atlcom.h>

enum EnumOnRtsEvent

{

 eOnRtsTps = 0,

 eOnRtsState,

 eOnRtsMiEnable,

 eOnRtsOutput,

 eOnRtsDisplay,

 eOnRtsInfo,

 eOnRtsWarning,

 eOnRtsError,

};

//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately

// before the previous line.

#endif //
!defined(AFX_STDAFX_H__203EBD2C_7A3A_42FE_B018_12F5404E61EE__INCLUDED_)

 At this point, the project should build without errors.

 We still need to add the property and the methods. The property will allow to set
the member variable m_ClientHWnd of the sink object to the dialog handle. The
member variable m_ClientHWnd will then allow the sink object to access the
buttons and the edit windows that we will implement later. The methods will
allow the sink object to establish and break the connection with the TpsServer.
We will see this in the explanation below.

3.2 Adding the Property and the Methods:
 In the project window, select the Class View tab and right click on the

ITpsClientSink Interface for the CWrtsClientModule and select Add Property.

 In that Add Property to Interface window, select long for Property Type,
ClientHandle for Property Name. Unselect GetFunction.

 Press on OK.
 In the TpsClientSink.cpp, add the line of code that will allow to set the member

variable m_ClientHWnd of the sink object to equal the handle for the dialog.

STDMETHODIMP CTpsClientSink::put_ClientHandle(long newVal)

{

 AFX_MANAGE_STATE(AfxGetStaticModuleState())

 // TODO: Add your implementation code here

 m_ClientHWnd = (HWND)newVal;

 return S_OK;

}

 At this point, we will also initialize that member variable in the constructor
located in TpsClientSink.h to be NULL.

public:

 CTpsClientSink()

 {

 m_ClientHWnd = NULL;

 }

 For the first method, right click once again on the Interface and select Add
Method. Enter SinkAdvise for the Method Name. Add IUnknown* newVal for
Parameters.

 In TpsClientSink.cpp, modify the return value from return S_OK; to the
following line below

STDMETHODIMP CTpsClientSink::SinkAdvise(IUnkown *newVal)

{

 AFX_MANAGE_STATE(AfxGetStaticModuleState())

 // TODO: Add your implementation code here

 return DispEventAdvise(newVal);

}

 For the second method, right click once again on the Interface and select Add
Method. Enter SinkUnadvise for the Method Name. Add IUnknown* newVal
for Parameters.

 In TpsClientSink.cpp, modify the return value from return S_OK; to the
following line below

STDMETHODIMP CTpsClientSink::SinkUnadvise(IUnknown *newVal)

{

 AFX_MANAGE_STATE(AfxGetStaticModuleState())

 // TODO: Add your implementation code here

 return DispEventUnadvise(newVal);

}

 At this point, we are done with sink class.
 We are going to declare a smart pointer in the dialog class that will point to the

sink object. In the WrtsClientDlg.h, we will add

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 CComPtr<RTSAX::ITpsServerEx> m_pTpsServerEx;

 CComPtr<ITpsClientSink> m_pSink;

};

 We are first going to add some code in OnInitdialog located in
WrtsClientDlg.cpp, that you will need to add regardless of the aspect of your
GUI:

BOOL CWrtsClientDlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically

 // when the application's main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 // create tps server

 HRESULT hr = m_pTpsServerEx.CoCreateInstance(RTSAX::CLSID_TpsServer);

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 // put tps server in asynchronous mode

 hr = m_pTpsServerEx->put_Synchronous(VARIANT_FALSE);

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 // create the sink object

 hr = m_pSink.CoCreateInstance(CLSID_TpsClientSink);

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 // pass the window handle to the sink object

 hr = m_pSink->put_ClientHandle((long)m_hWnd);

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 // set up the connection point

 hr = m_pSink->SinkAdvise(m_pTpsServerEx);

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 // attach tpsserver to wrts

 hr = m_pTpsServerEx->Attach();

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 return TRUE; // return TRUE unless you set the focus to a control

}

The added code has the following purpose:

 I. put_Synchronous puts the tps in asynchronous mode.

 II. CoCreateInstance creates the sink object.

 III. put_ClientHandle passes the dialog handle to the sink
object.

 IV. SinkAdvise connects the sink object to the TpsServer
connection point..

 Similarly as we added the UnAdvise in the OnInitdialog, we now need to add the
code for Unadvise in OnDestroy. We want to do this before we release the
TpsServer. We also want to release the sink object before releasing the TpsServer
object.

void CWrtsClientDlg::OnDestroy()

{

 CDialog::OnDestroy();

 // TODO: Add your message handler code here

 if (m_pSink && m_pTpsServerEx)

 m_pSink->SinkUnadvise(m_pTpsServerEx);

 m_pSink.Release();

 m_pTpsServerEx.Release();

}

 The project should build without errors. If you are having problems linking, close
the MSVC studio saving the project, and reload project. Doing a rebuild all at this
point should be successful.

3.3 Handling the notifications:
 Now we can add the code in the dialog. The location of this code is specific to this

sample and may be modified in order to match the functionality of your own GUI.
 We will address the three following actions:

 I. We will add a few Edit boxes in the dialog window

 II. Prepare the reception of notifications.

 III. We will add the code.

 IV. We will add the mapping.

3.3.1 Adding Edit boxes in the dialog

The purpose of doing this is to add three read-only edit boxes.

 I. One to display the messages intended for the Wrts display. This display
will not be a simple edit box, but an ActiveX control. This control will handle the
ASCII characters appropriately.

 II. The second Edit will display the project name.

 III. The last one will indicate the state of the Wrts.

We will first add two last edit boxes and two static boxes as defined below. We will add
the ActiveX control subsequently to this. In the end, the GUI will look like this.:

 Select the top left static box, and right click on it.
 Change the Caption to TPS: as shown below.

 Select the Edit box next to it and right click on it. Change the ID to
IDC_PROJNAME

 In the Styles tab, select Read only.

 In the second static box, change the Caption to Wrts State

 In the Edit box next to it, change the ID to IDC_STATE

 And change select Read only.

 Now we will add our ActiveX control that has been made available via the
Rtsax.dll import made earlier on. Your project workspace should look like this:

 Right click on the GUI window and select Insert ActiveX control and select
AnsiDisplay Class.

 Place that control in the open space on the GUI as seen below:

 Right-click on the ANSI Display and select Properties.

 In the All tab, change the BorderVisible attribute to be True in order to see a
border around the Display. You may change all other attributes if you wish to, but
we will limit ourselves to this one.

 Enter IDC_DISPLAY for the ID.
 Now we want to add manually, the command that would have been put by the

wizard had we selected the option to support ActiveX when we created the
project at the beginning of this document. In WrtsClient.cpp, in InitInstance,
add the following line of code:

BOOL CWrtsClientApp::InitInstance()

{

 if (!InitATL())

 return FALSE;

 AfxEnableControlContainer();

 CCommandLineInfo cmdInfo;

 ParseCommandLine(cmdInfo);

 if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)

 {

 return TRUE;

 }

 Now we want to add a variable associated to the Edit box that is used as display.
Go to View and select Class Wizard. If you don’t see the MFC ClassWizard
window directly, you will see the following window:

 Click on Yes and OK on the following window

 Select the Member Variables tab and select IDC_DISPLAY.

 Press on Add Variable and you will see the following window.

 Press OK.
 In the following window, unselect COleFont and press OK.

 Change the Member variable name to m_EditDisplay. Click on OK and OK on
the MFC ClassWizard window.

3.3.2 Preparing the reception of notifications

 In WrtsClientDlg.h, we will add a method that will handle the incoming
messages from the sink object.

 // Generated message map functions

 //{{AFX_MSG(CWrtsClientDlg)

 virtual BOOL OnInitDialog();

 afx_msg void OnPaint();

 afx_msg HCURSOR OnQueryDragIcon();

 afx_msg void OnDestroy();

 afx_msg void OnHalt();

 afx_msg void OnLoad();

 afx_msg void OnMi();

 afx_msg void OnReset();

 afx_msg void OnRun();

 afx_msg void OnUnload();

 //}}AFX_MSG

 LRESULT OnComMessage(WPARAM wParam, LPARAM lParam);

 DECLARE_MESSAGE_MAP()

 CComPtr<RTSAX::ITpsServerEx> m_pTpsServerEx;

 CComPtr<ITpsClientSink> m_pSink;

};

3.3.3 Adding the code

 We will add a small variable to keep track of the MI button. It will enable to keep
track of whether it needs to be pressed, regardless of whether we press on HALT
and then RUN. This variable and associated functionality makes sense in the

context of this sample, but not necessarily in the context of another GUI. We will
call this member variable m_bMI. It will be declared in the WrtsClientDlg.h
class

 LRESULT OnComMessage(WPARAM wParam, LPARAM lParam);

 DECLARE_MESSAGE_MAP()

 CComPtr<RTSAX::ITpsServerEx> m_pTpsServerEx;

 CComPtr<ITpsClientSink> m_pSink;

 BOOL m_bMI;

};

 We will initialize this variable in the OnInitDialog function to FALSE

 // attach tpsserver to wrts

 hr = m_pTpsServerEx->Attach();

 if (FAILED(hr)) { handleError(hr); return FALSE; }

 m_bMI = FALSE;

 return TRUE; // return TRUE unless you set the focus to a
control

}

 We will also set it to FALSE in OnMi

void CWrtsClientDlg::OnMi()

{

 // TODO: Add your control notification handler code here

 m_bMI = FALSE;

 HRESULT hr = m_pTpsServerEx->ManualIntervention();

 if (FAILED(hr))

 handleError(hr);

}

 It will also be handled OnComMessage function below.
 In the we will add #include <limits.h> at the top of WrtsClientDlg.cpp in order

to handle some of the code associated to the Display edit box in the
OnComMessage function.

// WrtsClientDlg.cpp : implementation file

//

#include "stdafx.h"

#include "WrtsClient.h"

#include "WrtsClientDlg.h"

#include <limits.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

 At the end of WrtsClientDlg.cpp, we will add the code associated to the
definition above:

LRESULT CWrtsClientDlg::OnComMessage(WPARAM wParam, LPARAM lParam)

{

 USES_CONVERSION;

 TRY

 {

 switch((EnumOnRtsEvent)wParam)

 {

 case eOnRtsTps:

 GetDlgItem(IDC_PROJNAME)-
>SetWindowText(OLE2T((BSTR)lParam));

 break;

 case eOnRtsMiEnable:

 GetDlgItem(IDC_MI)->EnableWindow(lParam);

 break;

 case eOnRtsState:

 // control the state of buttons

 switch(lParam)

 {

 case 0:// RTS_STATE_CLOSED

 GetDlgItem(IDC_STATE)->SetWindowText(_T("CLOSED"));

 GetDlgItem(IDC_RUN)->EnableWindow(FALSE);

 GetDlgItem(IDC_RESET)->EnableWindow(FALSE);

 GetDlgItem(IDC_HALT)->EnableWindow(FALSE);

 GetDlgItem(IDC_MI)->EnableWindow(FALSE);

 GetDlgItem(IDC_LOAD)->EnableWindow(TRUE);

 GetDlgItem(IDC_UNLOAD)->EnableWindow(FALSE);

 break;

 case 1:// RTS_STATE_READY

 GetDlgItem(IDC_STATE)->SetWindowText(_T("READY"));

 GetDlgItem(IDC_RUN)->EnableWindow(TRUE);

 GetDlgItem(IDC_RESET)->EnableWindow(TRUE);

 GetDlgItem(IDC_HALT)->EnableWindow(FALSE);

 GetDlgItem(IDC_MI)->EnableWindow(FALSE);

 GetDlgItem(IDC_LOAD)->EnableWindow(FALSE);

 GetDlgItem(IDC_UNLOAD)->EnableWindow(TRUE);

 break;

 case 2:// RTS_STATE_RUNNING

 GetDlgItem(IDC_STATE)->SetWindowText(_T("RUNNING"));

 GetDlgItem(IDC_RUN)->EnableWindow(FALSE);

 GetDlgItem(IDC_RESET)->EnableWindow(TRUE);

 GetDlgItem(IDC_HALT)->EnableWindow(TRUE);

 GetDlgItem(IDC_MI)->EnableWindow(m_bMI);

 GetDlgItem(IDC_LOAD)->EnableWindow(FALSE);

 GetDlgItem(IDC_UNLOAD)->EnableWindow(TRUE);

 break;

 case 3:// RTS_STATE_HALTED

 {

 GetDlgItem(IDC_STATE)->SetWindowText(_T("HALTED"));

 GetDlgItem(IDC_RUN)->EnableWindow(TRUE);

 GetDlgItem(IDC_RESET)->EnableWindow(TRUE);

 GetDlgItem(IDC_HALT)->EnableWindow(FALSE);

 // save the MI state

 CWnd* pMI = GetDlgItem(IDC_MI);

 m_bMI = pMI->IsWindowEnabled();

 pMI->EnableWindow(FALSE);

 GetDlgItem(IDC_LOAD)->EnableWindow(FALSE);

 GetDlgItem(IDC_UNLOAD)->EnableWindow(TRUE);

 }

 break;

 case 4:// RTS_STATE_FINISH

 GetDlgItem(IDC_STATE)->SetWindowText(_T("FINISH"));

 GetDlgItem(IDC_RUN)->EnableWindow(TRUE);

 GetDlgItem(IDC_RESET)->EnableWindow(TRUE);

 GetDlgItem(IDC_HALT)->EnableWindow(FALSE);

 GetDlgItem(IDC_MI)->EnableWindow(FALSE);

 GetDlgItem(IDC_LOAD)->EnableWindow(FALSE);

 GetDlgItem(IDC_UNLOAD)->EnableWindow(TRUE);

 break;

 }

 break;

 case eOnRtsOutput:

 case eOnRtsDisplay:

 m_EditDisplay.DisplayText(OLE2T((BSTR)lParam));

 break;

 case eOnRtsInfo:

 m_EditDisplay.DisplayInfo(OLE2T((BSTR)lParam));

 break;

 case eOnRtsWarning:

 m_EditDisplay.DisplayWarning(OLE2T((BSTR)lParam));

 break;

 case eOnRtsError:

 m_EditDisplay.DisplayError(OLE2T((BSTR)lParam));

 break;

 }

 return 0;

 }

 CATCH(COleDispatchException, e)

 {

 if (e->m_strDescription.IsEmpty())

 handleError(e->m_scError);

 else

 {

 CString errMsg;

 errMsg.Format("COM Error from %s: %s",

e->m_strSource,

e->m_strDescription);

 // Display the com error:

 ::MessageBox(NULL, errMsg, _T("Error"), MB_OK);

 }

 return 0;

 }

 AND_CATCH_ALL(e)

 {

 handleError(E_FAIL);

 return 0;

 }

 END_CATCH_ALL

}

3.3.4 Adding the map

 In the WrtsClientDlg.cpp, we will add the message map for the
OnComMessage.

BEGIN_MESSAGE_MAP(CWrtsClientDlg, CDialog)

 //{{AFX_MSG_MAP(CWrtsClientDlg)

 ON_WM_PAINT()

 ON_WM_QUERYDRAGICON()

 ON_WM_DESTROY()

 ON_BN_CLICKED(IDC_HALT, OnHalt)

 ON_BN_CLICKED(IDC_LOAD, OnLoad)

 ON_BN_CLICKED(IDC_MI, OnMi)

 ON_BN_CLICKED(IDC_RESET, OnReset)

 ON_BN_CLICKED(IDC_RUN, OnRun)

 ON_BN_CLICKED(IDC_UNLOAD, OnUnload)

 //}}AFX_MSG_MAP

 ON_MESSAGE(WM_USER + 1, OnComMessage)

END_MESSAGE_MAP()

At this point, the project should build without errors and you should be able to run the
client.

This should conclude the making of the Wrts client.

The picture below is a sample of what the GUI should look like after loading a sample
TPS.

	1 Creating the MFC GUI dialog
	1.1 Adding Buttons
	1.2 Connecting to the TpsServer

	2 The sink object:
	2.1 Creating the object:
	2.2 Adding functionality to the Buttons:

	3 Catching the notifications sent by the TpsServer:
	3.1 The sink class and connecting the client to th
	3.2 Adding the Property and the Methods:
	 III. put_ClientHandle passes

	3.3 Handling the notifications:
	3.3.1 Adding Edit boxes in the dialog
	3.3.2 Preparing the reception of notifications
	3.3.3 Adding the code
	3.3.4 Adding the map

