
TYX Corporation

Productivity Enhancement Systems

Reference TYX_0051_4
Revision 1.1
Document MSDebug2.doc
Date January 14, 2003

How to debug with
MSVC++6.0

1. Studio Version:

This document is for Studio 1.17.0 and later. The pictures below have been made using
version 1.21.2.

The Subset used for the Atlas is IEEE716.89/Paws.

This document assumes that the user has some knowledge of Studio and MSVC++6.0.

2. How to debug the Wcem.dll from the MS compiler:
We can utilize Microsoft Visual C++ and debug our drivers.

The first step is to have an Atlas program and a device database.
We are going to walk through an example in order to make this easier to understand. Here is the source file
for a small Atlas and device database example:

------------------------------ Atlas1.atl --
 000000 BEGIN, ATLAS PROGRAM 'Simple Dynamic' $
E900000 OUTPUT, C'START TEST' $
 10 SETUP, AC SIGNAL,
 VOLTAGE 5 V,
 CNX HI $
 999999 TERMINATE, ATLAS PROGRAM 'Simple Dynamic' $
------------------------------ end of Atlas1.atl --

------------------------------ Ddb1.ddb --
configuration Wcem_debugtest;
def, fnc, Dsp == 45; ** Display

begin dev FNG;
 cnx hi virtualpin;
 begin FNC = 10;
 control{
 voltage range 0 v to 140 v;
 }
 source ac signal;
 end;
end;
------------------------------ end of Ddb1.atl --

The busconfi file should be as follows:
------------------------------ busconfi --
; IEEE-488 Bus Configuration File -

"Channel" 2

FNG BUS 2 MLA 11 MTA 11
------------------------------ end of busconfi--

Put those files in a Paws project called MSDebug2. In our case, we will put the project under
C:\usr\paws\MSDebug.
You may place the Busconfi either in the local directory or you may place it in the station subdirectory in
your Station.

• Build the project, as shown below, under the TYX Studio.

• Now that the device database is built, you can create a Wcem module as shown below. You can call

the module Wcem and redefine the path to locate the module in the .paw subfolder rather than in
.\Wcem.
Note: By default, when you add the name for the Module Name, the files will be put into Module
name subfolder into the .paw folder, so you will need to delete the module name folder extension that
gets added automatically in the Module Location edit box.

• You will then have access to the Wcem Wizard in order to create the source files that will allow us to
build the Wcem.dll.

• Using the Wcem Wizard… under View, create the proper setup function associated to the Atlas
Setup function. You will want to check the voltage parameter:

• You may wish to add some features under General such as shown below. This will be responsible for

an additional C++ file generated by the Wcem Wizard called ctlr.c.

• Once all the functions have been mapped properly, you should click on OK. The Wizard will
generate a list of source files in the TYX studio. In this case, the list of files is the following:
Wrapper.cpp, key.h, error.cpp, ctlr.cpp and FNG.cpp.

• The file that will include the driver code that you might want to debug will be in this case FNG.cpp.
We will add a Display function in the doFNG_10_Setup function in FNG.cpp as shown below:

#include "cem.h"
#include "key.h"
#include <limits.h>
#include <float.h>
//BEGIN{DFW}:FNG:10:0
int doFNG_10_Setup (double VOLT)
//END{DFW}
{
 Display("Entering doFNG_10_Setup \n");
 return (int) 0;
}

Note: If you build the Wcem.dll from the Paws Studio, make sure that you either delete it or overwrite it
with Wcem.dll generated by the MS Studio, or it might cause some problems when debugging the dll from
the MSVC++6.0 generated by the MS Studio.

3. The MSVC environment:
Now, we are ready to move on to the MS environment. This example uses the support of MSVC 6.0.

• From the MSVC++6.0 under File, chose New… and select Projects. Fill in the Project name, Project

type and Location as shown below.

• After pressing OK, select An empty DLL project. As shown below.

• Press Finish and then OK.
• Now, select Project, Add to Project and Files…. This will open the window below. Select the TYX

Cem C++ files one after another. Here, we will select Wrapper.cpp, error.cpp, ctlr.cpp and the
FNG.cpp files.

• Press OK.
• We now need to add basically all the settings that you would have in the TYX Wcem settings. The

first thing will be to include the additional path of all the header files that you wish to include in your
project. In this case, one that is unavoidable is the cem.h file from TYX. The path is usually

C:\usr\tyx\include. This can be done going into Project->Settings->C/C++ in the Preprocessor
Category as shown below:

• Note: For greater safety, make sure that the Use run-time library option under Code Generation is
set to Debug Multithreaded as shown below.

• Under the General Category in Link, we need to include all the libraries that will be addressed by our
project. In this case, we need to add cem.lib and user32.lib at the end of the libraries already included
as shown below. You may wish to delete any additional libraries that aren’t used, but it will not affect
your project if you leave them there.

• You also need to specify the location of the Wcem.dll output file. This is where you need to be careful
about making sure that it will not conflict with the one generated with the TYX studio. In this case, we
will just locate the Wcem.dll generated here in the same directory as the one used by the TYX studio,
hence locally.

• Under the Project Options, we need to add /def:”C:\usr\tyx\include\WCEM.DEF“ as shown below.
If we fail to do this, the dll will build, but the Wrts will fail to make proper use of the Wcem.dll.

• Under the Input Category in Link, we need add the additional paths for the additional libraries as

show below.
• We also need to ignore the libc.lib library to avoid redefinition warnings.

• The next step is to set up the environment so that the Wrts can be started from the MS studio. Under
the General Category in Debug, you should look for the Wrts on your system for Executable for
debug session. Typically, it’s located under C:\usr\tyx\bin.

• Press OK on the Project Settings window.
• You are now ready to build the project and start it in debug mode. Make sure that the active

configuration is the debug version, which is the default one (under Build/Set Active configuration…)

• Build the project by pressing F7.

• You can place breakpoints in the CPP files that you have under the MS Studio, such as at the Display
function in the FNG.cpp file.

• Now you can run the project in debug mode via F5 or via Build->Start Debug-> Go. You may see

the following window if you missed the step regarding setting the Executable for Debug Session. The
first time, you will see the following window

• That is the window that will determine which executable to launch that will load the Wcem.dll, which
is the output of the MSVC project. Click on the arrow next to the edit box and select Browse. Select
Wrts.exe. This exe is usually located under c:\usr\tyx\bin

• Click on Open, and then OK.

• Click OK on the message box that tells you that the Wrts does not contain debug information after

checking the checkbox in order to not see this window the following time. This is the window that you
will see if you didn’t miss the step regarding setting the Executable for Debug Session.

• Once the Wrts started, you should select the MSDebug2.PAW project as shown below

• Run the project from the Wrts and MSVC will stop at the breakpoint set in the Setup function as

shown below. In this case, we placed a breakpoint in the FNG.cpp file.

• As we can see, the value specified in the Atlas for the Voltage value is visible.
• Note: If you are having problem with the breakpoint, it will be because you will have built the

Wcem.dll with the studio which has a release configuration and cannot be debugged. In order to
overcome this problem, you need to do a rebuild all from the MSVC++6.0 compiler in order to
overwritte the one generated by the Paws Studio.

4. How to debug the Atlas while you are debugging
the Wcem.dll driver?

This is a simple procedure.

1. You need to build the Wcem.dll in debug mode.
2. You need to start the Wrts from the MSVC++6.0 with F5. This will allow to debug the

Wcem.dll.

3. Load the project that you want to run in debug mode.

4. This will put the Wrts at the beginning of the TPS, ready to start.
Note: Before you reach this point, the MSVC may have stopped at a breakpoint that you placed in the
Wcem.dll code. This is not the case in this example.

5. Now, from the Paws Studio, go into Debug/Start Debug/Attach

6. This will lead to the following behavior in Paws Studio. In order for this to work you have to
have the Wrts running. In this case, Wrts will have been launched from the MSVC++6.0.

7. You may now debug both the Wcem.dll and the TPS at the same time: The Wcem.dll from the
MSVC++6.0 and the Tps from the Paws Studio. When running the Tps, the execution of the Tps
will be stopped at either breakpoints in the Tps or in the C++ code.

	1. Studio Version:
	2. How to debug the Wcem.dll from the MS compiler:
	3. The MSVC environment:
	4. How to debug the Atlas while you are debugging the Wcem

