TYX CORPORATION
Productivity Enhancement Systems

Reference TYX 0051 9
Revision 1.1b

Document PawslOHowTo2.doc
Date October 9, 2003

Binary I/O exe resource
without MEFC tutorial

This document will help with making the Binary input-output interface without MFC.

Studio version used:
1.20.0

Requirements:
Studio 1.10.x or above. Backward and forward compatibility between the COM build with one version of the Studio

library and other Studio version is not guarantied.

Introduction:

First we will address the issue of what to do with the exe that we wish to link to the Atlas with a Binary 10. Other
documents will address the issue of using the support of Text 10 and the usage of GUI within the COM environment.
Then we will see the Atlas and what it takes with a 416 environment to make use of it.

DIl versus Exe:
1. 1. Advantage of Dlls versus Exe:
e o The DIl uses fewer resources than the Exe.
e o The DIl can easily remain on top of the Wrts.
e o The accelerators are directly passed on to the Wrts without additional code. When the Exe has the
focus, it will need some code in order to pass on the accelerator destined for the Wrts.
e o The message loop for painting... is taken care of by the Wrts. For the Exe, the code needs to be placed
into the Exe which may be done by the wizard to some extent.
e o The DIl will be slightly faster than the Exe. This will however only make a difference for repeated
transfer of a large amount of data.
2. 2. Advantage of the Exe versus DII:
e o The Exe is more isolated than the DIl and if it crashes, it will not affect the Wrts. This may be an issue if
the Exe links to code that is not stable.
e o The Exe can be moved in front or behind the Wrts at will.
e o The Exe can be run remotely.

1 1 When generating a COM .exe with MSVC 6++

Hew

Filez Projects | YWorkspaces | Other Documents |

e &TL COM Sppiwizand

¢ | Cluster Resource Type Wizard
g<| Custom Appiwfizard

‘=1 Database Project

B D evStudio Add-in Wizard

A Extended Stored Proc \Wizard
G |S4P Ertenzion \Wizard

M akefile

i MFC Activex Controhwizard
8] MFC Appiwizard (i)

i MFC Appiwizard (exe)

@Q{: Mew D atabaze Wizard

4 Utility Project

®]win32 Application

jWinEE Conzole Application
|%] win32 Dynarnic-Link Library

<] |

%] 'win32 Static Library

i

Project name:

IF'ru:ui4|

Location:
|D:\ProfPrajd

¥ Create new workspace
= Add to cument waork space
™| Dependencyiaf:

I ThButtonz:

Platforms:
Iwmz

[_ox]

Cancel

e From File/New..., selectan ATL COM AppWizard and select a project name as seen below:

e Clickon OK

ATL Object Wizard 7] |

Cateqgary

Contrals
Mizcelaneous
Data Access

Objects

& =

Simple Object s SNl

Activex Server MMC Snapln
Comporent

Hext »

a

Intermet
Ewplor...

e _

S
Tranzachi..

-

Cancel |

ATL COM AppWwizard - Step 1 of 1

Set azs b

initial COR objects. After
uze the Mew ATL Object

Thiz Wwizard creates an ATL project without ary

completing this YWizard,
command from

MNew Claz

i ik to add to this project.
- (0 CLg NewATL
-ﬂ_l dﬁ Mew Fold Server Type
=l - [w Dacking " Dynamic Link Libramy [DLL)
Hid=

Propertie

i ?{’

&

“
+4q t
+ 4%

_—

™ Service [EXE)

= Sllawimergitg af oy st code
™| Support kM FE

N SupportIs

ClazsYiew to specify the tppe of object you would

< Back |

Hext > | Eiish |

Cancel

e Then select Executable (EXE) as seen below

e Click on Finish on the window above, and OK on the window that will appear after that.
e From the Studio, select insert/New ATL Object... Select Simple Object as seen below and click on Next.

e You will then see the following window. In the Short name: box, enter the name of the ATL object that you wish to
create. The other boxes will fill in by themselves. In this case, we chose the name ButtonRes. Don’t chose “IOResource”
because it’s already used by the system and it will prevent you from building the COM exe.

Also, take note of the name in Prog ID: In this case Proj4.ButtonRes (exe name followed by the short name). This will be

used as an entry in the Wrts options.

"-.-'-.-"ljrl::_:s:p ace ﬂ |
El--- Proj4 classes
'Ij CE xetodule
b=l |ButtonFes

-7 Glabals

B Clae e I Hesnurce\-’iew] File‘v’iewl
v Support [SupportE ol nkc I Free Threaded Marshaler

[Support Connection Points

k. I Cancel

ATL Object Wizard Properties E |

Names | Attributes |

—C++ — COM
Short N ame: |Buttﬂnﬁes=| | CoClass: IEuttDnHes
Llass: IEEuttDnHes Interface: IlEh"tt':'nF‘ES
H File: IButtu:unFl exh Tupe: IEuttDnHes Class
CPP File: [ButtarRes.cpp Piog D: [Proi4 ButtorFies

(] 4 I Cancel

o Inthe list of attributes, as shown below, all defaults can be acceptable. You may want to add the option of Support
IsupportErrorinfo.

These options make more sense for those that are familiar with COM.

e o ClickonOK.
e o Now we are back to the Studio.
e ¢ Now you need to link the project to an interface, which in this case relates to the Wrts capabilities. In the workspace,

you should right-click on the Class that starts with C<short name>, where short name is from the ATL Object Wizard
Properties. In our case CButtonRes as seen below.

e o Afterright clicking on CbuttonRes, Select Implement interface...

Browse Type Libraries E B3 _E

Available l‘;‘l:lE-' (- ITI To zelect an interface from this project, cancel
O RepU(1.1] 2l el |
O RepvCh(z.1]
[Riede 1.0 Type Libram(1.0] Browse. .. |

Ftzl0 1.0 Type Librany1.0]

[RitzLite 1.0 Type Librarw{1.0)

O RurOnce 1.0 Type Library(1.0)

[5chGnid OLE Custom Control module(1.0]
[5heridan 30 Contrals(1.0]

[5tandard OLE Types(2.0]

[Tabular Data Contral 1.1 Type Librar(1.1]

[TdgServer 1.0 Type Libran(1.0] -

—Rtzl0 1.0 Tepe Library(1.0]

Lacatian : c:hursbshearnsrtzio.

e o You will get the following message and then click on OK.

e o Select the RtslIO for Wrts input-output library and then click on OK. If you do not see RtsIO, it’s because you are
using a version of the TYX Stutio that is older than 1.10.x.

e o Inthe following window, you need to check 11OResouce and IBinaryResource (for text 10 resources) and then click
on OK.

Implement Interface EH |

RTSIOLib
! | Cancel |
Interfaces
gddTypdb_.l
O _ITextRezourceE vents -

|BinanF esource

O |CigFileResource

O IDlglnputResource

O HmIResource

[I0R ezourze

O 105 ubsystem

O IPortR ezource

O IFrinteR esource | |
O 15cundResource

O 5o

O ITextResouce ;I

¢ Now you will need to modify the source of what has been made available to you. In our case, double click on
CbuttonRes, or C<short name> as shown below:

e o This will give you the following text:
// ButtonRes.h : Declaration of the CButtonRes

#ifndef _ BUTTONRES H_
#define __BUTTONRES H_

#include '"'resource.h" // main symbols
#import "c:\usr\tyx\com\rtsio.dll" raw_interfaces_only, raw_native_types, no_namespace, named_guids

L1111 77777777777777777777777777777777777777/////7/////77//77777777777777/7/7/77/
// CButtonRes
class ATL_NO_VTABLE CButtonRes :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CButtonRes, &CLSID_ ButtonRes>,
public ISupportErrorinfo,
public IDispatchlmpl<lButtonRes, &IID_IButtonRes, &LIBID_PROJ4Lib>,
public IBinaryResource,
public Il10Resource

{

public:
CButtonRes()
{

}
DECLARE_REGISTRY_RESOURCEID(IDR_BUTTONRES)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY (1ButtonRes)
COM_INTERFACE_ENTRY (IDispatch)
COM_INTERFACE_ENTRY (1SupportErrorinfo)
COM_INTERFACE_ENTRY (I1BinaryResource)
COM_INTERFACE_ENTRY (1 10Resource)

END_COM_MAPQ)

// 1SupportsErrorinfo
STDMETHOD(InterfaceSupportsErrorinfo) (REFIID riid);

// 1ButtonRes
public:

// 1BinaryResource
STDMETHOD(Read) (LONG IType, VARIANT * pval)

t if (pval == NULL)
return E_POINTER;
return E_NOTIMPL;
%TDMETHOD(Write)(LONG 1Type, VARIANT val)
t return E_NOTIMPL;

T

// 110Resource
STDMETHOD(Open) (BSTR bstrName, LONG IMode)
{

return E_NOTIMPL;
%TDMETHOD(CIose)()
t return E_NOTIMPL;
%TDMETHOD(FIush)()
t return E_NOTIMPL;
%TDMETHOD(Abort)()
t return E_NOTIMPL;
%TDMETHOD(Seek)(LONG 10ffset, SHORT sOrigin)
t return E_NOTIMPL;
%TDMETHOD(get_name)(BSTR * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(get_Mode) (LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
by
STDMETHOD(get_Size)(LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
by
STDMETHOD(get_Position) (LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(get_Eof) (VARIANT BOOL * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(get_State) (LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
3
¥

#endif //__BUTTONRES_H_

e o What you will want to do first, is to change the exit code for all of those functions, from E_NOTIMPL which is the
return for “Error, not implemented”, to S_OK for an ok return value.
0 For example: For the Open and Close functions, you will get:

STDMETHOD(Open) (BSTR bstrName, LONG IMode)
t return S_OK; // Changed
%TDMETHOD(Close)()

i return S_OK; // Changed

Those particular functions are called by the Wrts upon loading and unloading the program with the Wrts. This is where you
would put the code that you wish to see executed when the Wrts loads and unloads an Atlas program.

e o You will also want to delete the following line on line 17:

public Il10Resource

in order to avoid compilation problems. Make sure that you also delete the comma at the end of line 16.

e o You will also want to return an end of file true statement in the get_Eof method:

STDMETHOD(get_EoF) (VARIANT _BOOL * pval)

if (pval == NULL)
return E_POINTER;
*pVal = VARIANT_TRUE; // Added
return S_OK; // Changed
}

e o The code below is where the binary input and output are being handled. Some code has been added in order to achieve
the goal that we have set ourselves in this example, which is to pass on and retrieve an integer. Typically, you will
implement your own code as a function of your own requirements:

// 1BinaryResource
STDMETHOD(Read) (LONG IType, VARIANT * pval)
{
if (pval == NULL)
return E_POINTER;

pval->vt = VT_I14; // Changed
pval->1val = 17; // Changed
return S_OK; // Changed

3
STDMETHOD(Write) (LONG IType, VARIANT val)

int IParam = val.lval; // Added
Beep(1Param*1000, 1000); // Added
return S_OK; // Changed

}

For Read, we will first want to initialize the variant to an integer type. This corresponds to the first changed line. The second
line sets the variant to the value 17.

For Write, the first line change corresponds to retrieving the integer value from the val variant. The Beep has been added to
show that it actually executes the Write method when the Atlas inputs.

The Output on the other hand will display the content of the output string from the Atlas.

e You are now ready to build the COM exe with the option Build/Build, by using the icon bar, or by pressing F7.
e You may register your exe manually or do it from within your project in the Custom Build setting.
To register is manually, you need to execute Proj4 /RegServer from a command line from the Proj4.exe location.

¢ Note for advanced users: If you are not an advanced COM user, you may skip this note.

If you want to make use of more than one 10 resource, such as text and binary, you may have a compilation problem unless
you correct some code.

In the file <Short Name>.h from the ATL Object Wizard Properties, ButtonRes.h in our case, in the COM_MAP
section, you may have an uncertainty about the mapping between the 11OResource and the resource that you want to use.
In our case, you will have the code below:

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY (1ButtonRes)
COM_INTERFACE_ENTRY (IDispatch)
COM_INTERFACE_ENTRY (1SupportErrorinfo)
COM_INTERFACE_ENTRY (1BinaryResource)
COM_INTERFACE_ENTRY (1 10Resource)

END_COM_MAPQ)

If you had another resource such as text, you will have to tell IIOResouce which resource to use in order to satisfy the
compiler. To do that, you will need to change the COM_INTERFACE_ENTRY for IIOResource to the line below.

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY (1ButtonRes)
COM_INTERFACE_ENTRY(I1Dispatch)
COM_INTERFACE_ENTRY (1SupportErrorinfo)
COM_INTERFACE_ENTRY2(110Resource, IBinaryResource) // Necessary to point to the
// desired class since there are two of them (Text and Binary).
COM_INTERFACE_ENTRY (1 TextResource)
COM_INTERFACE_ENTRY (I1BinaryResource)
END_COM_MAP()

e That will ensure that your code will build properly, and you may then make use of both 10 resource types.
2 What to do in the TYX Studio?

e At this point, you will need to have an Atlas program that makes use of that COM resource and to setup the Wrts in
order to link that Atlas 10 device to you COM exe.

21 2.1 Samplefor Atlas 416:

Note: The version of the Atlas 416 has to be high enough to include the INPUT and OUTPUT commands. Earlier versions of
416 Atlas do not include those commands.

001000 BEGIN, ATLAS PROGRAM "BUTTONS* $
001010 REQUIRE, *TM_BUTTON®", 1-O DEVICE,
CAPABILITY,
FILE-SIZE 80 WORDS
C
001020 DECLARE, INTEGER, STORE, "TM1*
C "TM1" value relets to the frequency of the beep, which occurs
C everytime when the BINARY 10 gets it"s parameter sent
001025 DECLARE, INTEGER, STORE, "TMSTATUS*®
C
E010000 DISPLAY, MESSAGE, THE START

R R R

010005 CALCULATE, "TM1® = 2
010010 DISPLAY, MESSAGE, *** OUTPUT TM1 = 2 ***

010011 OUTPUT, USING “TM_BUTTON®, ("TM1%)
010012 CALCULATE, *“TM1® = 4
010013 DISPLAY, MESSAGE, *** OUTPUT TM1 = 4 ***

010014 OUTPUT, USING "TM_BUTTON®, ("TM1%)
010015 DISPLAY, MESSAGE,------------

C

010020 INPUT, USING "TM_BUTTON®, ®“TMSTATUS*
C

010022 DISPLAY, MESSAGE, *** INPUT ***

B LR S L LR H

DISPLAY, MESSAGE, RETURNED VALUE: ***$
DISPLAY, RESULT, "TMSTATUS®

DISPLAY, MESSAGE, ***

THE END $
010040 TERMINATE, ATLAS PROGRAM “BUTTONS* $

This atlas will simply do two things:
It will output a message box to the Binary 10 with the value ‘2” and it will input an Integer that has been hard-coded in the COM
exeas ‘17,

You can note that for IEEE416 Atlas, you may use the same COM resource for input and output only with newer versions of
416 and only with a Binary 10.

You will need to compile this Atlas and have it ready to run.

2.2 2.2 Sample for Atlas 716.89/95:

001000 BEGIN, ATLAS PROGRAM "BUTTONS*

001010 DECLARE, VARIABLE, “TXT_DATA®" IS STRING(80) OF CHAR
12 DECLARE, VARIABLE, "OUT*® IS FILE OF UNTYPED

C

001020 DECLARE, VARIABLE, "TM1" IS INTEGER

$
$
$
$
$
C "TM1" value relets to the frequency of the beep, which occurs $

C everytime when the BINARY 10 gets it"s parameter sent
001025 DECLARE, VARIABLE, "TMSTATUS®" IS INTEGER

C

E010000 OUTPUT, C"THE START®

OUTPUT, C"———————————— -

OO0

010005 CALCULATE, "TM1® = 2
010006 ENABLE, I-O NEW C*TM_BUTTON®", VIA "OUT*
010010 OUTPUT, C=**** QUTPUT TM1 = 2 ****
010011 OUTPUT, TO *“OUT®, "TM1*
010012 CALCULATE, "TM1*® = 4
010013 OUTPUT, C**** QUTPUT TM1 = 4 ****
010014 OUTPUT, TO “OUT®, *“TM1*
010015 OUTPUT, C*-——-———m—mmv "
C
010020 INPUT, FROM “OUT®, INTO “TMSTATUS*®
C
010022 OUTPUT, CT™*** INPUT ****
OUTPUT, C"RETURNED VALUE: ****, "TMSTATUS®, CT™****
OUTPUT, C* - —— b
010030 OUTPUT, C*THE END*
010040 TERMINATE, ATLAS PROGRAM "BUTTONS*

R e e e R R R R R R R

This atlas will simply do two things:

It will output a message box to the Binary 10 with the value ‘2’ and it will input an Integer that has been hard-coded in the COM
exeas ‘17’.

You can note that for IEEE716.89 Atlas, you may use the same COM resource for input and output.

You will need to compile this Atlas and have it ready to run.

2.3 2.3 Wrts Settings

Now that Atlas is ready to run, you should launch the Wrts.
e o Gointo Control/Options...

options x|

General I Resources |

Frinter Property Page |

BTS Property Pages

Rts GUI

™ tonitor Bus

[Debugger Eont... |

k. | Cancel | Apply | Help |

e o Now Click on RTS Property Pages and select IOSubsystem

Server Property Pages Properties £|

RTS General| RTS Log 10Subsystem |

R egistered rezources:

Fezource Mame | Progl[:l
FRIMTER Rzl 0. PrinterR ezource
SOUMD Rtzl0.5oundR esource

SPREADSHEET Rtel0.ExcelRezource
TW_BUTTOM Unknown ProglD

YIDED Rtzl0 WideoRezource
WOARMIM G Rzl 0. T extPublizher
Rtzl0 FileResource
4| | 3
Add | LChanhge | Bemove | Properties |

k. I Cancel | Smply | Help |

e o Younow need to create the link between your Atlas 10 resource and the COM resource that you wish to link to. Go
into the list of Resource Names. If TM_BUTTON is already there with an unknown ProglID, remove it by selecting it and

Dialog |

Reszource name:

ProglD:

] |

by pressing Remove.
e o Press Add and you will see the following window:

e The Resource name is the one that you have defined in your Atlas. In out case TM_BUTTON.

e o Your ProglD will be the one that you will have remembered from Atlas Object Wizard Properties in the previous
task of generating the COM exe source.

e Inthis case, you will want to use TMButtons2.ButtonResource:

Add Resource x|

Resource name:
ITM_BLITTEIN

Prag 1D:
IF"ru:uid.Buttu:unH ez

Cancel |

e e Click on OK on this window and the one that will appear after that.
e o YourWrtsis now ready to link your Atlas 10 resource to your COM exe.

Note: The effect will take place the next time you will reopen the Wirts, so close the Wrts and reopen it.

You may now run the Atlas program and the COM exe will be invoked when necessary. The location of the COM exe does not
matter because it has been registered in your system.

3 3 Howto debugthe Com exe?

e o First, you put the breakpoints where you want them in your exe COM source code. You would now run the COM exe
in debug mode from MSVC++ by going into Build/Start debug/Go or by pressing F5.
e o Now you would go into the TYX studio and run the Wrts.

The run time system would execute until it used the 10 Com exe that you have running in debug mode. The execution of the
Wrts would stop at your breakpoints in the COM exe source.

