TYX CORPORATION
Productivity Enhancement Systems

Reference TYX 0051 6
Revision 1.1b

Document PawslOHowTo3.doc
Date October 9, 2003

Binary I\ O exe

MEC tutomnal

This document will help with the making of a Binary input-output interface with MFC.

Studio version used: 1.20.0

Requirements: Studio 1.10.x or above. Backward and forward compatibility between the COM build with one version of
the Studio library and the Studio version is not guarantied.

Introduction: First we will address the issue of what to do with the exe that we wish to link to the Atlas with a Binary 10
and MFC. Other documents will address the issue of using the support of Text 10 and Binary 10 resources without the
usage of GUI within the COM environment.

Then we will see the Atlas and what it takes with a 416 environment to make use of it.

DIl versus Exe:
1. 1. Advantage of Dlls versus Exe:
e o The DIl uses fewer resources than the Exe.
e o The DIl can easily remain on top of the Wrts.
e o The accelerators are directly passed on to the Wrts without additional code. When the Exe has the
focus, it will need some code in order to pass on the accelerator destined for the Wrts.
e o The message loop for painting... is taken care of by the Wrts. For the Exe, the code needs to be placed
into the Exe which may be done by the wizard to some extent.
e o The DIl will be slightly faster than the Exe. This will however only make a difference for repeated
transfer of a large amount of data.
2. 2. Advantage of the Exe versus DII:
e o The Exe is more isolated than the DIl and if it crashes, it will not affect the Wrts. This may be an issue if
the Exe links to code that is not stable.
e o The Exe can be moved in front or behind the Wrts at will.
e o The Exe can be run remotely.

1 1 When generating an exe with MSVC 6++
Combining ATL and MFC is not totally straight forward with the wizards. It is easier to deal with fixing the ATL problems on

top of a MFC project than the other way around so we are going to do just that:
First start an MFC project and then try to add the ATL to it.

1.1 1.1 Starting a simple MFC project, dialog based with one toggle button:

MFC AppWizard - Step 1 EHE

= Application what type of application would pou like to create?

" Single document
" Multiple documents
ol

V| Document/ew architeciure suppor?

What language would you like wour resources in?

| English [United States] (SPPWZENU.DLL x|

¢ Back I Mest » I

Einish Cancel

e From File/New..., select an MFC AppWizard (exe) and select a project name as seen below:

Mew

Filez Projects | Workzpaces I Other Documents I

o] ATL COM Appiafizand El Win32 Static Librany
¢| Cluzter Rezource Type Wizard
giv| Cugtom Sppwizard

‘=1 Databaze Froject

Q{: Mew D atabaze Wizard

i Utility Project

A |'Win3z2 Application

Win3z2 Congole Application
|%] Win32 Dynamic-Link Library

L |

Project name:

{Praig

Location:

[D:ProfvProie N

¥ Create new workspace
£ Add ko curent workspace
[T Dependency of:

Platforms:

Iwm32

o]

Cahcel

e o C(ClickonOK
e o Then select a Dialog Based project as seen below and click on Next:
[) [)

We will here uncheck the About box check box because we will not be using it. It is here that you will decided

MFC AppWizard - Step 2 of 4 EHE |

Wwihat features would you like to include?

= Application

[~ About box
[™ Contest-zensitive Help
W 30 contrals

Wwihat other support would wou like to include?

[~ Automation
i

Wwfould wou like to include WS4 support?

Editisg Control: Intcnrd

F Check Box @ Radioc Buttos
O Radioc Buttos

[T Windows Sockets

Please enter a title far paur dialon:

IF'rniE

¢ Back I Hext = I Finigh Cancel

whether you want to include ActiveX Controls. We will not be using it in our example. Uncheck ActiveX Controls and
then on Next:

MFC AppWizard - Step 3 of 4 EE:!

Wwihat ztyle of project would you like 7

% Microsoft Developer Studio

File Edit ¥iew Insert Bwild Help
LI % MFC Standard
) indaws Erplarer
‘?g"m £ TOD0: -
Bl o [[f| norroeroeroeroee YWhould you like to generate source file comments?
B -~ A TOD0:
#o [0 e ||| S
Feady = Ma, thank you

Howw would wou like to uge the MFC libram?

™ Az & shared DLL
% Az 3 statically linked librany

¢ Back I Mest > I Finizh | Cancel |

e o Inthe window below, we will want to link the MFC library statically for greater independence of our exe and click on
Next:

MFC AppWizard - Step 4 of 4 EHE

Appwizard creates the following clazzes for pou:

Class name: Header file:
|CProiGapp |Prai.h

Baze clazs: Implementatian file:
IEWinl’-'«pp IF'lDiEi.cpp

¢ Back | Ient | Einigh I Cancel

e e Click on Finish on the window below after accepting the default class name and OK on the window that will appear
after that.:

*.. Proj6 - Microsoft Yisual ... =] £ |'R0J6_DIALDG [Dialog)] [_10] <]

File Edit View Inset Preject Buid ~ [0° "o windew Hei =181
Layout Tools Purfy Window Help E’E%ﬂ |%|'DD_PHUJ5_D|ALUE ﬂ|"’-ﬁ‘

bzra| s o e o [=IR[P o5
CPioiEDlg =8 class menf

E Proj6.ic - IDD_PROJG... [9[=] E3

Caticel

ok I
[|

TODO: Place dialog contrals here. l
|8 152 22 o 2 | =0 B 3ot __
Ready b7 =
I s e
Lo Class\z"i...llgl Hesour...l File\-"iewl < | » I N
:,:II - :I’T Az abl [O &
® B E ¢ m
o B2 [= 3 H 26
BEm- e H
A1, Buitd { Debug Find in Files1 % Find in Files2]| 4] | |
ElEEE A EE R = E
Ready [f: 0.0 [i320%200 [READ 7

e o Ifwelook at the image below, we can see what the project should look like.

e o Wewill gointo the dialog box and delete the OK button and the Cancel button. All you need to do is to left click on
the buttons and press the delete button on your keyboard. We then want to click on the TODO caption and delete it as well.
We will want to resize the dialog window to something sufficient for one button as seen below:

e o Now we will add a check-box. Click on the check box and drag it onto the dialog box. You will see the following
below:

*.; Projb - Microsoft ¥isual C++ [_ (O] %]

H File Edit “iew |nsett Project Build Lavout Tools Puiify Window Help

8 EEE % e[Sy 2 B ES Hoo_Pros iaoe

CProjEDlg =l[1pC_cHECK =||BN_CLICKED
—
] © -
—_ B .

= s oaal™

@

s o |l e

- g

iz

=5 H

ab [

[

e

=

Ready

Frsgl % & |EHHE W2 =0 |
' [#1210 [READ

e o Rightclick on the checkbox and select the Properties. You will see the windows below and change the caption to
Button.

Check Box Properties

= ? General | Styles | Estended Stulez I

ID: [IDC_CHECK x| Caption: [Button

V¥ Wizible [T Group [T HelplD
[T Disabled ¥ Tab stop

e o Inthe Style tab, select Push-like check box.

*. Projb - Microsoft ¥isual C++ [_ O]

JJ File Edit ‘iew Insert Project Build Layout Toolz Puwify ‘window Help
JJ‘@ EZEH@ | = e |- - |m[E® | Hoo_Pross DIALOG j|=ﬂ‘
JJ CProiEDlg ||| 120 class members) =l| %CProj6DIg =FE - “@ i ! il ” L2 E S R
2=
Ea Projb resources * -
=43 Dialog
Ea lcon -
1] — | >
- EIassVi...l] Hesour...l FiIeViewI
::II B ﬂ,T Aa abl [O X
® B 2 m
- &2 [[= 23 B at
BEEm e
Build 4 Debug p Find in Files 1 3 Find in Files2]| 4] | r
[z e == =
Ready [+ 00 [fFF 51x30° |READ| 4

Check Box Properties

4 General Extended Stules I
¥ Auto [¥ Pushike [~ Flat Harizontal slignment:
[Left test [Multline [lzan IDefauIt j
[Tri-gtate [Matify [Bitmap “erical alignment:

I Drefault j

e ¢ Inthe Extended Styles, select the options that you see fit.
e o Thenright click on the dialog box and select Properties. In Style, uncheck the title bar and close that window:

Shyle: [Clip ziblings
IF":'F'”F' jv ™| Systern menuy [Clip children
Border: ! Wimimize boy [Horizontal scrall

IDiah:'EI Frame]' I} b amimize bax [Wertical scrol

e o You will see now have the following project:

MFC ClassWizard HE|

tezzage Maps | tember Y anables | Autamation | Activer Events I Clazz Info |

Eroject: Clasz name: Add Class.. - |

=] |CProiEDig =]
; ; . ; ; . Aol EmEtiE T
O:MProjProjesProjllig. b, D:WProjsProjgsProEllio. cpp
Object |0 Meszages: [Elete Euretam |
i CalcindowR ect - .
IDC._CHE CK Create :l el
DefwfindowProc
Destrogwfindow
DoDataExchange
Drobdodal
GetScrollBarChl j

b ember functions:
YW DoDataEschange

W OnlnitDialog OM_w_INITDIALOG
W OnPaint OM_witd_PaINT
W OnluenDraglcon M _w_QUERYDRAGICOM
Dezcription;
OF. I Cancel
e o Build your project by going into Build/Build Proj6.exe or press F7. Your project should build without errors.

e Now, you can write click on the dialog box window and select ClassWizard. You will see the following window:

e o Thisis where you may add any functionality related to clicking on the window. We will in our case only be interested
in what happens when we click on the button. No implementation of that functionality is necessary in our case.
In the event that you wished to implement it, you will have to select IDC_CHECKZ1 on the Object Ids window.
Then you will double-click on BN_CLICKED in the Messages. This will have the same effect as adding a function to the
message event BN_CLICKED.

e o You will see the window below:

tember function name; N

K. I
Cancel |

teszage; BM_CLICKED
Object ID: IDC_CHECK1

e o Click on OK after allowing the default name to be chosen.
Now you have allowed the wizard to add the code to your project. Click on OK on the MFC ClassWizard window.

1.2 1.2 Now, we will add the ATL environment:

Note: Due to a known problem with MFC, it is possible that this step may be giving you some problems. In order to avoid those
problems, we will need to clean up the files a little bit and proceed from there. If the process of adding the ATL object crashes,
by cleaning it up once more, the second attempt is usually successful.
e o Wewill wantto:

0 o0 Close the MSVC Studio after saving the project workspace.

0 o0 Delete the files that are in your project subfolder with the extensions: ncb, opt, plg, aps and clw and the

Debug folder.
0 o0 Open the project by double clicking on the file with the dsw extension.
0 0 Goto Insertand select New ATL Obiject.

ATL Object Wizard |

Do you want to add ATL support bo wour MFC project?
Mo | Help |

0 o Clickon Yes
0 0 You may see the following window:

ATL Object Wizard x|

0 Sorry! an error occurred while generating the object,

0 o0 Clickon OK. If you’re lucky, you’ll see the ATL Object Wizard window displayed below. If you do,
proceed from there, otherwise, follow the next instruction.

0 Gointo Build and select Clean.

Go into File and select Save Workspace.

Close the MSVC Studio.

Delete the files with the extension ncb, aps and opt and the Debug folder.

Double click on the file with the dsw extension.

Go to Insert and select New ATL Object.

Now you should see the following window:

O O0OO0OO0OO0OO0Oo
O O0OO0OO0OO0OOo

ATL Obiject Wizard 21x]

Cateqgary Objects
Conirol ol Q r
Mizcellaneous
Data Access Simple Olbjectta' Ayl /=t Internet
Ex=plar...
® -
Activer Server MMC Snapln 5
Component Tranzacti...
[~
MHest » Cancel |

e From the Studio, select insert/New ATL Obiject... Select Yes on the following window:

e Select Simple Object as seen below and click on Next.

ATL Object Wizard EH |

LCategory Objects

Coniols ol Q

Mizcelaneous
Data Access Simple Object sl Eagulits, Internet
Ewxplar...

2 B 6 -

Activer Server MMC Snapln
Cormpatient Transan:tl...

-

MHest > Cancel |

e You will then see the following window. In the Short name: box, enter the name of the ATL object that you wish to
create. The other boxes will fill in by themselves. In this case, we chose the name ButtonRes. Don’t chose the name
IOResource because it’s already used by the system and it will prevent you from building the COM exe.

Also, take note of the name in Prog ID: In this case Proj6.ButtonRes (exe name followed by the short name). This will be
used as an entry in the Wrts options.

o Inthe list of attributes, as shown below, all defaults can be acceptable. You may want to add the option of Support
IsupportErrorinfo.
These options make more sense for those that are familiar with COM.

Implement Interface |

OE.

ThButtonsLib
HHETEE I Cancel

Interfaces

bl

Add Typelib...
Could niat find appopriate interface in the wpe libraryg

e e ClickonOK.
e o Now we are back to the Studio.
e o Now you need to link the project to an interface, which in this case relates to the Wrts capabilities. In the workspace,

you should right-click on the Class that starts with C<short name>, where short name is from the ATL Object Wizard
Properties. In our case CButtonRes as seen below.

e After right-clicking on CbuttonRes, Select Implement interface...

e o You will get the following message and then click on OK.

@ |Unable to find a type library far this project. Click OF. to choose fram available type libranes To select an interface from this project, cancel

thiz operation and firzt compile the idl file,
Cancel |

e o Inthe event that you see the following image instead of the previous one, press Add Typelib...

e o Select the RtslIO for Wrts input-output library and then click on OK. If you do not see RtslO, it’s because you are
using a version of the TYX Studio that is older than 1.10.x.

Browse Type Libraries

Awvallable Type Libranes

Udal;

O RepUtd=1.1] Al Cancel
O RepvCH(2.1)
[Rtz 1.0 Type Librang(1.0] Browsze. ..

Ftzl0 1.0 Type Libran1.0]

[RisLite 1.0 Type Libram(1.0]

O FunOnee 1.0 Type Library(1.0]

[5chiGrnid OLE Custon Contral module(1.0)
[Sheridan 30 Contrals(1.0)

[5tandard OLE Types(2.0

[T abular Data Contral 1.1 Type Library(1.1]

[TdgServer 1.0 Type Libra(1.0] -

—Rt=l0 1.0 Type Libran(1.0]

Location ; ook oanmrtzio. dll

e o Make sure that the rtsio.dll is located in the location described at the bottom of the window above.
e o Inthe following window, you need to check 11OResouce and then click on OK.

Implement Interface i |

Add Tupelib...

RTSIOLib | Carcel |
afnce
Interfaces |

O _ITextFesourceE vents =
O BinaryResource

O ICigFileReszounce

O IDlglnputResounce

[[ExcelResource

O IFileResource

O HmIResource —
O loContral

[I10R ezounze

O 105ubsystem

[I0bjectFactany

M IPArtR eznuree LI

e o Repeat the interface implementation for IBinaryResource (for text 10 resources). For this, go back to right-clicking

on the CButtonRes from ClassView and rather than selecting I1OResource in the Implement Interface window, select
IBinaryResource as seen below.

Implement Interface

2=
RTSIOLib
! | Cancel |
Interfaces
Add Tepelib... |
O _ITextRezourceE vents =

|BinanF esource

O |CigFileResource

O IDlglnputResource

[[ExcelResource

O IFileResource

O HmIResource —
O noCentral

O ll0Resource

O 105ubsystem

[|0bjectFactory

M IPartR eznuree LI

e o Inthe event that you see this window below, clean the project as we’ve seen above, reopen the dsw project and make
follow the instruction below. You will want to make sure that the code is the same as the one listed below.

ATL Object Wizard x|

Q Sorry! An error occurred while Implementing Interfaces ConnectionPoinks,

B8 CProjfdpp
B8 CProjfDlg

b g _Module

] Elass"-.fiewl Hesu:uuru:e"-.fiewl File‘-.r‘iewl

e ¢ Now you will need to modify the source of what has been made available to you. In our case, double click on
CbuttonRes, or C<short name> as shown below:

// ButtonRes.h : Declaration of the CButtonRes

#ifndef _ BUTTONRES_H_
#define _ BUTTONRES_H_

#include "resource.h" // main symbols
#import "c:\usr\tyx\com\rtsio.dll" raw_interfaces_only, raw_native_types, no_nhamespace, named_guids

L111171777777777777777777777777777777777777/7/77777///777////777///77/7////7777/7
// CButtonRes
class ATL_NO_VTABLE CButtonRes :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CButtonRes, &CLSID_ButtonRes>,
public ISupportErrorinfo,
public IDispatchlmpl<lButtonRes, &l11D_lButtonRes, &LIBID_Proj6Lib>,
public IBinaryResource,
public Il10Resource

public:
CButtonRes()

}
DECLARE_REGISTRY_RESOURCEID(IDR_BUTTONRES)

DECLARE_PROTECT_FINAL_CONSTRUCTQ)

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY (1ButtonRes)
COM_INTERFACE_ENTRY (IDispatch)
COM_INTERFACE_ENTRY (ISupportErrorinfo)
COM_INTERFACE_ENTRY(IBinaryResource)
COM_INTERFACE_ENTRY (I 10Resource)
END_COM_MAPQ)

// 1SupportsErrorinfo
STDMETHOD (InterfaceSupportserrorInfo) (REFIID riid);

// 1ButtonRes
public:

// 1BinaryResource
STDMETHOD(Read) (LONG IType, VARIANT * pval)
{
if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
T
STDMETHOD(Write) (LONG IType, VARIANT val)
{

return E_NOTIMPL;

// 110Resource
STDMETHOD(Open) (BSTR bstrName, LONG IMode)

{ return E_NOTIMPL;
gTDMETHOD(CIose)()
{ return E_NOTIMPL;
gTDMETHOD(FIush)()
{ return E_NOTIMPL;
%TDMETHOD(Abort)()

return E_NOTIMPL;
gTDMETHOD(Seek)(LONG 10ffset, SHORT sOrigin)
{ return E_NOTIMPL;
gTDMETHOD(get_name)(BSTR * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
¥
STDMETHOD(get_Mode) (LONG * pVal)
{

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
%TDMETHOD(get_Size)(LONG * pval)
{ if (pval == NULL)
return E_POINTER;
return E_NOTIMPL;
%TDMETHOD(get_Position)(LONG * pval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;
3
STDMETHOD(get_Eof) (VARIANT _BOOL * pval)

if (pval == NULL)

¥

return E_POINTER;
return E_NOTIMPL;
}
STDMETHOD(get_State) (LONG * pVval)

if (pval == NULL)
return E_POINTER;

return E_NOTIMPL;

#endif //__BUTTONRES_H_

For complete information on each one of those functions, please refer to the TYX website or the updated online help. You
can also look at the rtsio.dll with the OleView tool that is provided with your compiler.

e What you will want to do first, is to change the exit code for all of those functions, from E_NOTIMPL which is the
return for “Error, not implemented”, to S_OK for an ok return value.
0 For example: For the Open and Close functions, you will get:

STDMETHOD(Open) (BSTR bstrName, LONG IMode)

{

return S_OK; // Changed
¥
STDMETHOD(Close) O
{

return S_OK; // Changed
3

Those particular functions are called by the Wrts upon loading and unloading the program with the Wrts. This is where you
would put the code that you wish to see executed when the Wrts loads and unloads an Atlas program.

e You will also want to delete the following line on line 17:
public Il10Resource

in order to avoid compilation problems. Make sure that you also delete the comma at the end of line 16.

e You will also want to return an end of file true statement in the get_Eof method:

STDMETHOD(get_EoF) (VARIANT _BOOL * pval)

if (pval == NULL)

return E_POINTER;
*pVal = VARIANT_TRUE; // Added
return S_OK; // Changed

}

e The code below is where the binary input and output are being handled. Some code has been added in order to achieve
the goal that we have set ourselves in this example, which is to pass on and retrieve an integer. Typically, you will
implement your own code as a function of your own requirements:

#include "Proj6Dlg.h" // Included at the top of file in order to allow the code
// beneath to build

// 1BinaryResource

STDMETHOD(Read) (LONG 1Type, VARIANT * pval)

{
CProj6Dlg* pDlg = (CProj6DIg*)AfxGetMainWnd(); // Added

if (pval == NULL)
return E_POINTER;

pval->vt = VT_I14; // Added
pval->1val = (int)pDlg->1sDIgButtonChecked(IDC_CHECK1); // Added
return S_OK; // Changed
3
STDMETHOD(Write) (LONG IType, VARIANT val)
{
CProj6DIg* pDlg = (CProj6DIg*)AfxGetMainWnd(); // Added
// Set button to required state
if (val_lval == 1)
pDIg->CheckDlgButton(IDC_CHECK1, BST_CHECKED); // Added
else if (val.lval == 0) // Added
pDIg->CheckDlgButton(IDC_CHECK1, BST_UNCHECKED); // Added
else // Added
return E_FAIL; // Added
return S_OK; // Changed
3

the first command in Read using AfxGetMainMod give you a pointer to the current window that consists in the one
containing the button. This pointer will then give you access to it’s content.

pVal->vt will set the type of the variant to an integer. The following line will retrieve the information whether the button is
checked or not and set the variant equal to it.

In Write, we retrieve the pointer to the window the exact same way. The following lines ckeck the button as a function of
what is passed on by the Atlas.

There are naturally different ways to do the same thing, and this is only one of them.

The Output on the other hand will display the content of the output string from the Atlas.

e If you wish to see the window appear when loading an Atlas project and disappear when unloading it, you need to go
into the ButtonRes.h file and:

Change the code for the Open and Close function to the following code:

STDMETHOD(Open) (BSTR bstrName, LONG IMode)

{
CProj6éDIg* pDlg = (CProj6DIg*)AfxGetMainWnd(); // Added
if (pblg) pDlg->ShowWindow(SW_SHOW) ; // Added
return S_OK; // Changed
¥
STDMETHOD(Close))
{
CWnd* pDlg = AfxGetMainWnd(); // Added
if (pbDlg) pDlg->ShowWindow(SW_HIDE); // Added
return S_OK; // Changed
3

e You are now ready to build the exe with the option Build/Build, by using the icon bar, or by pressing F7.

e You may register your exe manually or do it from within your project in the Custom Build setting.

To register is manually, you need to execute Proj6 /RegServer from a command line from the Proj6.exe location.

e Note for advanced users: If you are not an advanced COM user, you may skip this note.

If you want to make use of more than one 10 resource, such as text and binary, you may have a compilation problem unless
you correct some code.

In the file <Short Name>.h from the ATL Object Wizard Properties, ButtonRes.h in our case, in the COM_MAP
section, you may have an uncertainty about the mapping between the 11OResource and the resource that you want to use.
In our case, you will have the code below:

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY/(IButtonRes)
COM_INTERFACE_ENTRY/(IDispatch)
COM_INTERFACE_ENTRY (ISupportErrorinfo)
COM_INTERFACE_ENTRY (IBinaryResource)
COM_INTERFACE_ENTRY (IIOResource)

END_COM_MAP()

If you had another resource such as text, you will have to tell IOResouce which resource to use in order to satisfy the
compiler. To do that, you will need to change the COM_INTERFACE_ENTRY for 1IOResource to the line below.

BEGIN_COM_MAP(CButtonRes)
COM_INTERFACE_ENTRY (IButtonRes)
COM_INTERFACE_ENTRY (IDispatch)
COM_INTERFACE_ENTRY (ISupportErrorinfo)
COM_INTERFACE_ENTRY2(I1OResource, IBinaryResource) // Necessary to point to the

/Il desired class since there are two of them (Text and Binary).

COM_INTERFACE_ENTRY (ITextResource)
COM_INTERFACE_ENTRY (IBinaryResource)

END_COM_MAP()

That will ensure that your code will build properly, and you may then make use of both 10 resource types.

This is the following code in ButtonRes.h that will do that.

1.3 1.3 Whatis wrong and how to fix it?

1.3.1 1.3.1 Registration problems:

e The first thing that is wrong, is that the COM exe is not registered. The reason are related to the bugs in the MS
wizard.

So, we are going to do manually, what the Wizard does when dealing with an ATL/COM project and not when you start
with a MFC project.

e Inorder to be able to edit the Proj6.rc, you will need to search with Edit/Find in File ... from the menu bar, for the
keyword “registry”.
e Then it in the Output window as shown below, double click on a line that includes Proj6.rc.

e Click OK on the following Window

Add the following lines

L117777777777777777777777777777777777777/7777777/77//777//77//77//7///77//777/
//
// TYPELIB

Project Settings K E3 |

Settings For:

Al Configurations j MIDL' Browsze Info Customn Build | F're-linktlj 4|>

Input file: <multiple selection:

Diezcription: IPerfDrming registration]

LCormmards

"$[TargetPath]" /RegServer

echo regevrd2 exec. time > "$0uwtDirvregevrd2 trg"
echio Server registration donel

Qutputs

FOutDirvregeve 32 g

[—
[~
[
[

Directory = Filez - |

Ok I Cancel |

//
1 TYPELIB MOVEABLE PURE "Proj6.tlb"

at the line 161.

o o Now, for the registration to be done automatically when you build your project, you will need to change some settings
in the project.

From the menu, select Project/Settings...
In the Custom Build tab, you need to select All Configurations for Settings For: and you need then to enter 3 things:

In Description: Performing registration

In Commands: "$(TargetPath)" /RegServer

echo regsvr32 exec. time > "$(OutDir)\regsvr32._trg"
echo Server registration done!

In Outputs: $(OutDir)\regsvr32.trg

The picture below will show exactly that.

Now, expand Proj6 in Settings For: and then expand Source Files. Make sure that you are using All configurations.

Project Settings |

Settings For: I,.-l-.,|| Configurations j General MIDL |
E|" Proif Rezet |
=44 Source Files -
BUt_t':'nHES":pp Clutput file name: Output header file name:
e Proif t Projf._ih
i idl I rajb.k I rajb L
Proj.rc Additional include directories:
£] ProjDlg.cpp ¥ Stubless Proxies
i Stdédfx cpp I -
Eﬂ"g Header Files Preproceszsor definitions: LD File:
[+ Rezource Files —
- [E] ReadMe.tst I IP[DIE‘I'D

¥ Suppress startup banner [~ METwpLib compatible

Commaon O ptions:

|nhenitance description not available. :I
[
] I Cancel I

e o Select the Proj6.idl file and select the MIDL tab as shown below:

e o Inthe Output file name: edit box, write Proj6.tlb. Click then on OK. You are basically removing the Debug and
Release path to the Proj6.tlb file in the debug and release configuration.

1.3.2 1.3.2 Problems with viewing the window when running the Wrts and invoking the Binary
resource Proj6.ButtonRes:

As you may realize later, you wouldn’t be able to see your Proj6é exe GUI when you run your Atlas program and invoke your 10
resource. However, the Binary 10 will still work.
This can be fixed in the files that were given to you by the wizards.

In the file Proj6.cpp, you need to locate the function BOOL CProj6App: : Initinstance() and in the if condition if
(cmdInfo.m_bRunEmbedded || cmdinfo.m_bRunAutomated), comment out the return as shown below, in order to avoid
breaking out of the function:

if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)

//return TRUE; // Comment this return
T

1.3.3 1.3.3 What if you want to use ActiveX controls?

You will need to add a line in Proj6.cpp in the following function BOOL CProj6App::Initinstance() as seen below:

BOOL Cproj6App::Initinstance()

if (MInitATLQ)
return FALSE;

AfxEnableControlContainer(); // Added

This command enables just that possibility.

1.3.4 1.3.4 How to move the TMButtons.exe?

You will need to reregister the exe manually.
To do this, you need to go into a DOS window, move up to the subdirectory where the Proj6.exe is and execute the following
command:

Proj6 /RegServer or in any other case <your exe>/RegServer

2 2 Whattodointhe TYX Studio?

e o Atthis point, you will need to have an Atlas program that makes use of that COM resource and to setup the Wrts in
order to link that Atlas 10 device to your COM exe.

21 2.1 Sample for Atlas 416:

Note: The version of the Atlas 416 has to be high enough to include the INPUT and OUTPUT commands. Earlier versions of
416 Atlas do not include those commands.

001000 BEGIN, ATLAS PROGRAM “BUTTONS™ $
001010 REQUIRE, *TM_BUTTON®", I1-0O DEVICE,
CAPABILITY,
FILE-SIZE 80 WORDS
C
001020 DECLARE, INTEGER, STORE, “TM1*
001025 DECLARE, INTEGER, STORE, "I*
001030 DECLARE, INTEGER, STORE, "TMSTATUS*
C
EO010000 DISPLAY, MESSAGE, ******dxx THE START *iikdsiidirrx

DISPLAY, MESSAGE, ******kiii*x QUTPUT

010010 CALCULATE, *TM1® = 1
010020 OUTPUT, USING *TM_BUTTON®, ("TM1*)
DISPLAY, MESSAGE, *BUTTON ON®
$
WAIT FOR, 1 SEC BEFORE STEP 010030
010030 CALCULATE, *TM1® = O
010040 OUTPUT, USING "TM_BUTTON®, ("TM1*)
DISPLAY, MESSAGE, "BUTTON OFF*
$
WAIT FOR, 1 SEC BEFORE STEP 010050
010050 CALCULATE, *TM1® = 1
010060 OUTPUT, USING *TM_BUTTON®, ("TM1%)
DISPLAY, MESSAGE, *BUTTON ON*

LR B L HRH

LR

LR

$

WAIT FOR, MANUAL INTERVENTION
END, FOR
010190 DISPLAY, MESSAGE, *******x*x*x*x* THE END

WAIT FOR, 1 SEC BEFORE STEP 010070 $
C $
010070 CALCULATE, "TM1® =1 $
010080 OUTPUT, USING “TM_BUTTON®", ("TM1%) $
DISPLAY, MESSAGE, *********xxx INPUT
$
FOR, "1" =1 THRU 5 BY 1, THEN $
010090 INPUT, USING "TM_BUTTON®, “TMSTATUS® $
010100 DISPLAY, MESSAGE, TMSTATUS -$
DISPLAY, RESULT, "1°* $
DISPLAY, MESSAGE, /5 - = $
010110 DISPLAY, RESULT, "TMSTATUS* $
010120 DISPLAY, MESSAGE, -Press Manual intervention to continue-
$
$
$
$
$

010200 TERMINATE, ATLAS PROGRAM "BUTTONS*

This atlas will simply demonstrate two things:

It will output updated status of the button from checked to unchecked and vice-versa, and it will retrieve the status of the button
in the Atlas via a Binary 10 resource.

You can note that for IEEE416 Atlas, you may use the same COM resource for input and output only with newer versions of
416 and only with a Binary 10.

You will need to compile this Atlas and have it ready to run.

2.2 2.2 Sample for Atlas 716-89/95:

001000 BEGIN, ATLAS PROGRAM “BUTTONS™
10 DECLARE, VARIABLE, "TXT_DATA® IS STRING(80) OF CHAR
12 DECLARE, VARIABLE, "OUT*® IS FILE OF UNTYPED

77 CALCULATE, "TM1® =1
85 OUTPUT, CT\LF*##sssxsirx |NPUT -

$

$

$

C $
20 DECLARE, VARIABLE, "TM1® IS INTEGER $

25 DECLARE, VARIABLE, "I" 1S INTEGER $

30 DECLARE, VARIABLE, “TMSTATUS® IS INTEGER $

10 OUTPUT, CH\LR******dkktk QUTPUT " $

C $
11 CALCULATE, "TM1® =1 $

12 ENABLE, 1-O NEW C"TM_BUTTON®, VIA "OUT" $

22 OUTPUT, TO "OUT®, "TM1* $

25 OUTPUT, C*BUTTON ON* $

32 WAIT FOR, 1 SEC $

35 CALCULATE, "TM1®" =0 $

45 OUTPUT, TO "OUT", "TM1- $

48 OUTPUT, C"BUTTON OFF* $

55 WAIT FOR, 1 SEC $

57 CALCULATE, "TM1" =1 $

65 OUTPUT, TO "OUT", "TM1* $

70 OUTPUT, C*BUTTON ON* $

75 WAIT FOR, 1 SEC $

C $
$

$

$

95 FOR, "1" =1 THRU 5 BY 1, THEN

97 INPUT, FROM "OUT®, INTO "TMSTATUS® $
010100 OUTPUT, C"TMSTATUS ---", "I*, C*/ 5 --- =", "TMSTATUS" $
20 OUTPUT, C"Press TRUE or FALSE to continue...\LF\" $
30 INPUT, GO-NOGO $
40 END, FOR $
50 DISABLE, "OUT" $
90 OUTPUT, Cr#****xxskskxxx THE END " $
C $
010200 TERMINATE, ATLAS PROGRAM "BUTTONS® $

This atlas will simply demonstrate two things:

It will output updated status of the button from checked to unchecked and vice-versa, and it will retrieve the status of the button
in the Atlas via a Binary 10 resource. The resource will be visible after is has been enabled and will close when it is disabled.
You will need to compile this Atlas and have it ready to run.

2.3 2.3 Wrts Settings:

Now that the Atlas is ready to run, you should launch the Wrts.
e ¢ Gointo Control/Options...

options x|

General I Resources I

Frinter Property Page |

BTS Property Pagesz

Rts GUI

[tdonitor Bus

™ Debugger Font... |

] 4 Cancel Apply Help

e o Now Click on RTS Property Pages and select the IOSubsystem tab

Dialog |

Reszource name:

ITM_BUTTDN

ProglD:
IF'ru:uiE.Butt-:unH =53

Cancel |

Server Property Pages Properties £|

RTS General| RTS Log 10Subsystem |

R egistered rezources:

Fezource Mame | Progl[:l
FRIMTER Rzl 0. PrinterR ezource
SOUMD Rtzl0.5oundR esource

SPREADSHEET Rtel0.ExcelRezource
TW_BUTTOM Unknown ProglD
YIDED Rtzl0 WideoRezource
WOARMIM G Rzl 0. T extPublizher

Rtzl0 FileResource

4| | b

Add | LChanhge | Bemove | Properties |

k. I Cancel | Smply | Help |

e o Younow need to create the link between your Atlas 10 resource and the COM resource that you wish to link to. Go
into the list of Resource Names. If TM_BUTTON is already there with an unknown ProglID, remove it by selecting it and
by pressing Remove.

e o Press Add and you will see the following window:

The Resource name is the one that you have defined in your Atlas. In our case TM_BUTTON.

Your ProglID will be the one that you will have remembered from Atlas Object Wizard Properties in the previous task of
generating the COM exe source.

In this case, you will want to use Proj6.ButtonRes:

e o Click on OK on this window. Both of those entries will appear in the Server Property Pages Properties.

Server Property Pages Properkties il

ATS General | ATS Log 105ubsystem |

Reqiztered resources:

Rezource Mame | FraoglD ﬂ
INFO Rzl 0. T extPublisher

INFUT Rtz 0.DiglnputR ezource

ouTPUT Rzl 0. T extPublisher

FRINTER Rzl 0. FrinterR esource

SOUND Fitzl0. SoundResource

SPREADSHEET Riel0.ExcelResource
T BUTTON Projb.ButtonHes

WIDED Riz10 VideoR ezource -
adADRIIRIT PN 1 e PR Y Y Y PN PR

1 | H

Add | LChange | Bemaove | Broperties |

OF. I Cancel | Aol | Help |

e o Ifthisstep fails, you need to make sure that the NO resource exe (Proj6 in this case) is registered before trying again.
Your Wrts is now ready to link your Atlas 10 resource to your COM exe.

Note: The effect will take place the next time you will reopen the Wirts, so close the Wrts and reopen it.

You may now run the Atlas program and the COM exe will be invoked when necessary. The location of the COM exe does not
matter because it has been registered in your system.

3 3 Howtodebugthe Com exe?

e o First, you put the breakpoints where you want them in your exe COM source code. You would now run the COM exe
in debug mode from MSVC++ by going into Build/Start debug/Go or by pressing F5.
e ¢ Now you would go into the TYX studio and run the Wrts.

The run time system would execute until it used the 10 Com exe that you have running in debug mode. The execution of the
Wrts would stop at your breakpoints in the COM exe source.

