
TYX CORPORATION
Productivity Enhancement Systems

Reference TYX_0051_6
Revision 1.1b
Document PawsIOHowTo3.doc
Date October 9, 2003

Binary I\O exe

MFC tutorial

This document will help with the making of a Binary input-output interface with MFC.

Studio version used: 1.20.0

Requirements: Studio 1.10.x or above. Backward and forward compatibility between the COM build with one version of
the Studio library and the Studio version is not guarantied.

Introduction: First we will address the issue of what to do with the exe that we wish to link to the Atlas with a Binary IO
and MFC. Other documents will address the issue of using the support of Text IO and Binary IO resources without the
usage of GUI within the COM environment.
Then we will see the Atlas and what it takes with a 416 environment to make use of it.

Dll versus Exe:
1. 1. Advantage of Dlls versus Exe:

• • The Dll uses fewer resources than the Exe.
• • The Dll can easily remain on top of the Wrts.
• • The accelerators are directly passed on to the Wrts without additional code. When the Exe has the

focus, it will need some code in order to pass on the accelerator destined for the Wrts.
• • The message loop for painting… is taken care of by the Wrts. For the Exe, the code needs to be placed

into the Exe which may be done by the wizard to some extent.
• • The Dll will be slightly faster than the Exe. This will however only make a difference for repeated

transfer of a large amount of data.
2. 2. Advantage of the Exe versus Dll:

• • The Exe is more isolated than the Dll and if it crashes, it will not affect the Wrts. This may be an issue if
the Exe links to code that is not stable.

• • The Exe can be moved in front or behind the Wrts at will.
• • The Exe can be run remotely.

1 1 When generating an exe with MSVC 6++

Combining ATL and MFC is not totally straight forward with the wizards. It is easier to deal with fixing the ATL problems on
top of a MFC project than the other way around so we are going to do just that:
First start an MFC project and then try to add the ATL to it.

1.1 1.1 Starting a simple MFC project, dialog based with one toggle button:

• • From File/New…, select an MFC AppWizard (exe) and select a project name as seen below:

• • Click on OK
• • Then select a Dialog Based project as seen below and click on Next:

• • We will here uncheck the About box check box because we will not be using it. It is here that you will decided

whether you want to include ActiveX Controls. We will not be using it in our example. Uncheck ActiveX Controls and
then on Next:

• • In the window below, we will want to link the MFC library statically for greater independence of our exe and click on
Next:

• Click on Finish on the window below after accepting the default class name and OK on the window that will appear •
after that.:

• If we look at the image below, we can see what the project should look like.

• We will go into the dialog box and delete the OK button and the Cancel button. All you need to do is to left click on
.

• Now we will add a check-box. Click on the check box and drag it onto the dialog box. You will see the following

•

•

the buttons and press the delete button on your keyboard. We then want to click on the TODO caption and delete it as well
We will want to resize the dialog window to something sufficient for one button as seen below:

•
below:

• • Right click on the checkbox and select the Properties. You will see the windows below and change the caption to

Button.

• • In the Style tab, select Push-like check box.

• • In the Extended Styles, select the options that you see fit.
• • Then right click on the dialog box and select Properties. In Style, uncheck the title bar and close that window:

• • You will see now have the following project:

• • Build your project by going into Build/Build Proj6.exe or press F7. Your project should build without errors.
• • Now, you can write click on the dialog box window and select ClassWizard. You will see the following window:

• • This is where you may add any functionality related to clicking on the window. We will in our case only be interested

in what happens when we click on the button. No implementation of that functionality is necessary in our case.
In the event that you wished to implement it, you will have to select IDC_CHECK1 on the Object Ids window.
Then you will double-click on BN_CLICKED in the Messages. This will have the same effect as adding a function to the
message event BN_CLICKED.

• • You will see the window below:

• • Click on OK after allowing the default name to be chosen.

Now you have allowed the wizard to add the code to your project. Click on OK on the MFC ClassWizard window.

1.2 1.2 Now, we will add the ATL environment:

Note: Due to a known problem with MFC, it is possible that this step may be giving you some problems. In order to avoid those
problems, we will need to clean up the files a little bit and proceed from there. If the process of adding the ATL object crashes,
by cleaning it up once more, the second attempt is usually successful.
• • We will want to:

o o Close the MSVC Studio after saving the project workspace.
o o Delete the files that are in your project subfolder with the extensions: ncb, opt, plg, aps and clw and the

Debug folder.
o o Open the project by double clicking on the file with the dsw extension.
o o Go to Insert and select New ATL Object.

o o Click on Yes
o o You may see the following window:

o o Click on OK. If you’re lucky, you’ll see the ATL Object Wizard window displayed below. If you do,

proceed from there, otherwise, follow the next instruction.
o o Go into Build and select Clean.
o o Go into File and select Save Workspace.
o o Close the MSVC Studio.
o o Delete the files with the extension ncb, aps and opt and the Debug folder.
o o Double click on the file with the dsw extension.
o o Go to Insert and select New ATL Object.
o o Now you should see the following window:

• • From the Studio, select insert/New ATL Object… Select Yes on the following window:

• • Select Simple Object as seen below and click on Next.

• • You will then see the following window. In the Short name: box, enter the name of the ATL object that you wish to
create. The other boxes will fill in by themselves. In this case, we chose the name ButtonRes. Don’t chose the name
IOResource because it’s already used by the system and it will prevent you from building the COM exe.
Also, take note of the name in Prog ID: In this case Proj6.ButtonRes (exe name followed by the short name). This will be
used as an entry in the Wrts options.

• • In the list of attributes, as shown below, all defaults can be acceptable. You may want to add the option of Support

IsupportErrorInfo.
These options make more sense for those that are familiar with COM.

• • Click on OK.

• • Now we are back to the Studio.

• • Now you need to link the project to an interface, which in this case relates to the Wrts capabilities. In the workspace,

you should right-click on the Class that starts with C<short name>, where short name is from the ATL Object Wizard
Properties. In our case CButtonRes as seen below.

• • After right-clicking on CbuttonRes, Select Implement interface…

• • You will get the following message and then click on OK.

• • In the event that you see the following image instead of the previous one, press Add Typelib…

• • Select the RtsIO for Wrts input-output library and then click on OK. If you do not see RtsIO, it’s because you are

using a version of the TYX Studio that is older than 1.10.x.

• • Make sure that the rtsio.dll is located in the location described at the bottom of the window above.
• • In the following window, you need to check IIOResouce and then click on OK.

• • Repeat the interface implementation for IBinaryResource (for text IO resources). For this, go back to right-clicking

on the CButtonRes from ClassView and rather than selecting IIOResource in the Implement Interface window, select
IBinaryResource as seen below.

• • In the event that you see this window below, clean the project as we’ve seen above, reopen the dsw project and make

follow the instruction below. You will want to make sure that the code is the same as the one listed below.

• • Now you will need to modify the source of what has been made available to you. In our case, double click on
CbuttonRes, or C<short name> as shown below:

// ButtonRes.h : Declaration of the CButtonRes

#ifndef __BUTTONRES_H_
#define __BUTTONRES_H_

#include "resource.h" // main symbols
#import "c:\usr\tyx\com\rtsio.dll" raw_interfaces_only, raw_native_types, no_namespace, named_guids

///
// CButtonRes
class ATL_NO_VTABLE CButtonRes :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CButtonRes, &CLSID_ButtonRes>,
 public ISupportErrorInfo,
 public IDispatchImpl<IButtonRes, &IID_IButtonRes, &LIBID_Proj6Lib>,
 public IBinaryResource,
 public IIOResource
{
public:
 CButtonRes()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_BUTTONRES)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CButtonRes)
 COM_INTERFACE_ENTRY(IButtonRes)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
 COM_INTERFACE_ENTRY(IBinaryResource)
 COM_INTERFACE_ENTRY(IIOResource)
END_COM_MAP()

// ISupportsErrorInfo
 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

// IButtonRes
public:

// IBinaryResource
 STDMETHOD(Read)(LONG lType, VARIANT * pVal)
 {
 if (pVal == NULL)
 return E_POINTER;

INTER;

Val)

; return E_NOTIMPL

 }
 STDMETHOD(Write)(LONG lType, VARIANT val)
 {
 return E_NOTIMPL;
 }
// IIOResource
 STDMETHOD(Open)(BSTR bstrName, LONG lMode)
 {
 return E_NOTIMPL;
 }
 STDMETHOD(Close)()
 {

turn E_NOTIMPL; re
 }

(Flush)() STDMETHOD
 {

turn E_NOTIMPL; re
 }
 STDMETHOD(Abort)()
 {
 return E_NOTIMPL;
 }
 STDMETHOD(Seek)(LONG lOffset, SHORT sOrigin)
 {
 return E_NOTIMPL;
 }
 STDMETHOD(get_name)(BSTR * pVal)
 {

 (pVal == NULL) if
 return E_PO

; return E_NOTIMPL
 }
 STDMETHOD(get_Mode)(LONG * pVal)
 {
 if (pVal == NULL)
 return E_POINTER;

 return E_NOTIMPL;
 }
 STDMETHOD(get_Size)(LONG * pVal)
 {
 if (pVal == NULL)
 return E_POINTER;

; return E_NOTIMPL
 }

(get_Position)(LONG * p STDMETHOD
 {
 if (pVal == NULL)
 return E_POINTER;

 return E_NOTIMPL;
 }
 STDMETHOD(get_Eof)(VARIANT_BOOL * pVal)
 {

 (pVal == NULL) if

 return E_POINTER;

 return E_NOTIMPL;
 }

(get_State)(LONG * pVal STDMETHOD)

INTER;

each one of those functions, please refer to the TYX website or the updated online help. You

• What you will want to do first, is to change the exit code for all of those functions, from E_NOTIMPL which is the

 {
 (pVal == NULL) if

 return E_PO

 return E_NOTIMPL;
 }
};

#endif //__BUTTONRES_H_

For complete information on
can also look at the rtsio.dll with the OleView tool that is provided with your compiler.

•
return for “Error, not implemented”, to S_OK for an ok return value.
o For example: For the Open and Close functions, you will get:

 STDMETHOD(Open)(BSTR bstrName, LONG lMode)

HO

ose particular functions are called by the Wrts upon loading and unloading the program with the Wrts. This is where you

•

public IIOResource

•

STDMETHOD(get_Eof)(VARIANT_BOOL * pVal)

• The code below is where the binary input and output are being handled. Some code has been added in order to achieve

// IBinaryResource

 {
 return S_OK; // Changed
 }

D(Close)() STDMET
 {
 return S_OK; // Changed
 }

Th
would put the code that you wish to see executed when the Wrts loads and unloads an Atlas program.

 You will also want to delete the following line on line 17:

•

in order to avoid compilation problems. Make sure that you also delete the comma at the end of line 16.

 You will also want to return an end of file true statement in the get_Eof method:

•

 {

 (pVal == NULL) if
 return E_POINTER;
 *pVal = VARIANT_TRUE; // Added
 return S_OK; // Changed
 }

•

the goal that we have set ourselves in this example, which is to pass on and retrieve an integer. Typically, you will
implement your own code as a function of your own requirements:

#include "Proj6Dlg.h" // Included at the top of file in order to allow the code
 // beneath to build

 STDMETHOD(Read)(LONG lType, VARIANT * pVal)
 {
 CProj6Dlg* pDlg = (CProj6Dlg*)AfxGetMainWnd(); // Added

 if (pVal == NULL)
 return E_POINTER;

the first command in Read using AfxGetMainMod give you a pointer to the current window that consists in the one

l retrieve the information whether the button is

w the exact same way. The following lines ckeck the button as a function of

s to do the same thing, and this is only one of them.

e Output on the other hand will display the content of the output string from the Atlas.
•

nd Close function to the following code:

 STDMETHOD(Open)(BSTR bstrName, LONG lMode)

• Build/Build F7

on.
•

 pVal->vt = VT_I4; // Added
 pVal->lVal = (int)pDlg->IsDlgButtonChecked(IDC_CHECK1); // Added

 return S_OK; // Changed
 }
 STDMETHOD(Write)(LONG lType, VARIANT val)
 {
 CProj6Dlg* pDlg = (CProj6Dlg*)AfxGetMainWnd(); // Added
 // Set button to required state
 if (val.lVal == 1)
 pDlg->CheckDlgButton(IDC_CHECK1, BST_CHECKED); // Added
 else if (val.lVal == 0) // Added
 pDlg->CheckDlgButt DC 1, UN D) // Added on(I _CHECK BST_ CHECKE ;
 else // Added
 return E_FAIL; // Added

 return S_OK; // Changed
 }

containing the button. This pointer will then give you access to it’s content.
pVal->vt will set the type of the variant to an integer. The following line wil
checked or not and set the variant equal to it.
In Write, we retrieve the pointer to the windo
what is passed on by the Atlas.
There are naturally different way

Th

 hen unloading it, you need to go
into the ButtonRes.h file and:
Change the code for the Open a

• If you wish to see the window appear when loading an Atlas project and disappear w

 {
 CProj6Dlg* pDlg = (CProj6Dlg*)AfxGetMainWnd(); // Added
 if (pDlg) pDlg->ShowWindow(SW_SHOW); // Added
 return S_OK; // Changed
 }
 STDMETHOD(Close)()
 {
 CWnd* pDlg = AfxGetMainWnd(); // Added
 if (pDlg) pDlg->ShowWindow(SW_HI // AddedDE);
 return S_OK; // Changed
 }

 You are now ready to build the exe with the option , by using the icon bar, or by pressing .
• • You may register your exe manually or do it from within your project in the Custom Build setting.

•

To register is manually, you need to execute Proj6 /RegServer from a command line from the Proj6.exe locati
 • Note for advanced users: If you are not an advanced COM user, you may skip this note.

If you want to make use of more than one IO resource, such as text and binary, you may have a compilation problem unless
you correct some code.

In the file <Short Name>.h from the ATL Object Wizard Properties, ButtonRes.h in our case, in the COM_MAP
se.

GIN_COM_MAP(CButtonRes)
ButtonRes)

)

you had another resource such as text, you will have to tell IIOResouce which resource to use in order to satisfy the

GIN_COM_MAP(CButtonRes)
ButtonRes)

)
ryResource) // Necessary to point to the

at will ensure that your code will build properly, and you may then make use of both IO resource types.

is is the following code in ButtonRes.h that will do that.

1.3 1.3 What is wrong and how to fix it?

1.3.1 1.3.1 Registration problems:

• The first thing that is wrong, is that the COM exe is not registered. The reason are related to the bugs in the MS

re going to do manually, what the Wizard does when dealing with an ATL/COM project and not when you start

• In order to be able to edit the Proj6.rc, you will need to search with Edit/Find in File … from the menu bar, for the

• tput window as shown below, double click on a line that includes Proj6.rc.

• Click OK on the following Window

dd the following lines

///

section, you may have an uncertainty about the mapping between the IIOResource and the resource that you want to u
In our case, you will have the code below:

BE
 COM_INTERFACE_ENTRY(I
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(ISupportErrorInfo
 COM_INTERFACE_ENTRY(IBinaryResource)
 COM_INTERFACE_ENTRY(IIOResource)
END_COM_MAP()

If
compiler. To do that, you will need to change the COM_INTERFACE_ENTRY for IIOResource to the line below.

BE
 COM_INTERFACE_ENTRY(I
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(ISupportErrorInfo
 COM_INTERFACE_ENTRY2(IIOResource, IBina
 // desired class since there are two of them (Text and Binary).
 COM_INTERFACE_ENTRY(ITextResource)
 COM_INTERFACE_ENTRY(IBinaryResource)
END_COM_MAP()

Th

Th

•

wizard.
So, we a
with a MFC project.

•
keyword “registry”.
• Then it in the Ou

•

A

//
//
// TYPELIB

//

1 TYPELIB MOVEABLE PURE "Proj6.tlb"

for the registration to be done automatically when you build your project, you will need to change some settings

t All Configurations for Settings For: and you need then to enter 3 things:

echo regsvr32 exec. time > "$(OutDir)\regsvr32.trg"

In Outputs:

w will sh

Now, expand Proj6 in Settings For: and then expand Source Files. Make sure that you are using All configurations.

at the line 161.

• Now, •
in the project.
From the menu, select Project/Settings…
In the Custom Build tab, you need to selec

 Description: Performing registration In

In Commands: "$(TargetPath)" /RegServer

echo Server registration done!

$(OutDir)\regsvr32.trg

he picture belo ow exactly that. T

• •

• • Select the Proj6.idl file and select the MIDL tab as shown below:

• • In the Output file name: edit box, write Proj6.tlb. Click then on OK. You are basically removing the Debug and

Release path to the Proj6.tlb file in the debug and release configuration.

1.3.2 1.3.2 Problems with viewing the window when running the Wrts and invoking the Binary
resource Proj6.ButtonRes:

As you may realize later, you wouldn’t be able to see your Proj6 exe GUI when you run your Atlas program and invoke your IO
resource. However, the Binary IO will still work.
This can be fixed in the files that were given to you by the wizards.

In the file Proj6.cpp, you need to locate the function BOOL CProj6App::InitInstance() and in the if condition if
(cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated), comment out the return as shown below, in order to avoid
breaking out of the function:

 if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)
 {
 //return TRUE; // Comment this return
 }

1.3.3 1.3.3 What if you want to use ActiveX controls?

You will need to add a line in Proj6.cpp in the following function BOOL CProj6App::InitInstance() as seen below:

BOOL Cproj6App::InitInstance()

// Added

is command enables just that possibility.

1.3.4 1.3.4 How to move the TMButtons.exe?

ou will need to reregister the exe manually.
, move up to the subdirectory where the Proj6.exe is and execute the following

oj6 /RegServer or in any other case <your exe>/RegServer

2 What to do in the TYX Studio?

• At this point, you will need to have an Atlas program that makes use of that COM resource and to setup the Wrts in

2.1 2.1 Sample for Atlas 416:
igh enough to include the INPUT and OUTPUT commands. Earlier versions of

01000 BEGIN, ATLAS PROGRAM 'BUTTONS' $

 $

030 $

0 $

{
if (!InitATL())

 return FALSE;

AfxEnableControlContainer();

…

Th

Y
To do this, you need to go into a DOS window
command:

Pr

2

•

order to link that Atlas IO device to your COM exe.

Note: The version of the Atlas 416 has to be h
416 Atlas do not include those commands.

 0
 001010 REQUIRE, 'TM_BUTTON', I-O DEVICE,
 CAPABILITY,

 WORDS FILE-SIZE 80
C $
 001020 DECLARE, INTEGER, STORE, 'TM1' $
 001025 DECLARE, INTEGER, STORE, 'I' $
 001030 DECLARE, INTEGER, STORE, 'TMSTATUS' $
C $
E010000 DISPLAY, MESSAGE, *********** THE START ***************

 $
 DISPLAY, MESSAGE, *********** OUTPUT ******************
 $

 010010 CALCULATE, 'TM1' = 1 $
 010020 OUTPUT, USING 'TM_BUTTON', ('TM1') $
 DISPLAY, MESSAGE, 'BUTTON ON'
 $

 IT FOR, 1 SEC BEFORE STEP 010 WA
 010030 CALCULATE, 'TM1' = 0 $
 010040 OUTPUT, USING 'TM_BUTTON', ('TM1') $
 DISPLAY, MESSAGE, 'BUTTON OFF'
 $

, 1 SEC BEFORE STEP 01005 WAIT FOR
 010050 CALCULATE, 'TM1' = 1 $
 010060 OUTPUT, USING 'TM_BUTTON', ('TM1') $
 DISPLAY, MESSAGE, 'BUTTON ON'

 $
 WA IT FOR, 1 SEC BEFORE STEP 010070 $
C $
 010070 CALCULATE, 'TM1' = 1 $
 010080 OUTPUT, USING 'TM_BUTTON', ('TM1') $
 DISPLAY, MESSAGE, *********** INPUT *******************

 $
 FOR, 'I' = 1 THRU 5 BY 1, THEN $
 010090 INPUT, USING 'TM_BUTTON', 'TMSTATUS' $
 010100 DISPLAY, MESSAGE, TMSTATUS -$
 DISPLAY, RESULT, 'I' $
 DISPLAY, MESSAGE, /5 - = $
 010110 DISPLAY, RESULT, 'TMSTATUS' $
 010120 DISPLAY, MESSAGE, -Press Manual intervention to continue-
 $
 WAIT FOR, MANUAL INTERVENTION $
 END, FOR $
 010190 DISPLAY, MESSAGE, *********** THE END ******************
 $
 010200 TERMINATE, ATLAS PROGRAM 'BUTTONS' $

This atlas will simply demonstrate two things:
It will output updated status of the button from checked to unchecked and vice-versa, and it will retrieve the status of the button
in the Atlas via a Binary IO resource.
You can note that for IEEE416 Atlas, you may use the same COM resource for input and output only with newer versions of
416 and only with a Binary IO.
You will need to compile this Atlas and have it ready to run.

2.2 2.2 Sample for Atlas 716-89/95:

 001000 BEGIN, ATLAS PROGRAM 'BUTTONS' $
 10 DECLARE, VARIABLE, 'TXT_DATA' IS STRING(80) OF CHAR $
 12 DECLARE, VARIABLE, 'OUT' IS FILE OF UNTYPED $
C $
 20 DECLARE, VARIABLE, 'TM1' IS INTEGER $
 25 DECLARE, VARIABLE, 'I' IS INTEGER $
 30 DECLARE, VARIABLE, 'TMSTATUS' IS INTEGER $
C $
E010000 OUTPUT, C'*********** THE START ***************' $
 10 OUTPUT, C'\LF*********** OUTPUT ******************' $
C $
 11 CALCULATE, 'TM1' = 1 $
 12 ENABLE, I-O NEW C'TM_BUTTON', VIA 'OUT' $
 22 OUTPUT, TO 'OUT', 'TM1' $
 25 OUTPUT, C'BUTTON ON' $
 32 WAIT FOR, 1 SEC $
 35 CALCULATE, 'TM1' = 0 $
 45 OUTPUT, TO 'OUT', 'TM1' $
 48 OUTPUT, C'BUTTON OFF' $
 55 WAIT FOR, 1 SEC $
 57 CALCULATE, 'TM1' = 1 $
 65 OUTPUT, TO 'OUT', 'TM1' $
 70 OUTPUT, C'BUTTON ON' $
 75 WAIT FOR, 1 SEC $
C $
 77 CALCULATE, 'TM1' = 1 $
 85 OUTPUT, C'\LF*********** INPUT *******************'
 $
 95 FOR, 'I' = 1 THRU 5 BY 1, THEN $

 97 INPUT, FROM 'OUT', INTO 'TMSTATUS' $
 010100 OUTPUT, C'TMSTATUS ---', 'I', C'/ 5 --- =', 'TMSTATUS' $
 20 OUTPUT, C'Press TRUE or FALSE to continue...\LF\' $
 30 INPUT, GO-NOGO $
 40 END, FOR $
 50 DISABLE, 'OUT' $
 90 OUTPUT, C'*********** THE END ******************' $
C $
 010200 TERMINATE, ATLAS PROGRAM 'BUTTONS' $

This atlas will simply demonstrate two things:
It will output updated status of the button from checked to unchecked and vice-versa, and it will retrieve the status of the button

•

in the Atlas via a Binary IO resource. The resource will be visible after is has been enabled and will close when it is disabled.
You will need to compile this Atlas and have it ready to run.

2.3 2.3 Wrts Settings:

• Now that the Atlas is ready to run, you should launch the Wrts.
• • Go into Control/Options…

• • Now Click on RTS Property Pages and select the IOSubsystem tab

• • You now need to create the link between your Atlas IO resource and the COM resource that you wish to link to. Go

into the list of Resource Names. If TM_BUTTON is already there with an unknown ProgID, remove it by selecting it and
by pressing Remove.

• • Press Add and you will see the following window:

The Resource name is the one that you have defined in your Atlas. In our case TM_BUTTON.

Your ProgID will be the one that you will have remembered from Atlas Object Wizard Properties in the previous task of
generating the COM exe source.

In this case, you will want to use Proj6.ButtonRes:

• • Click on OK on this window. Both of those entries will appear in the Server Property Pages Properties.

• • If this step fails, you need to make sure that the I\O resource exe (Proj6 in this case) is registered before trying again.

Your Wrts is now ready to link your Atlas IO resource to your COM exe.

Note: The effect will take place the next time you will reopen the Wrts, so close the Wrts and reopen it.

You may now run the Atlas program and the COM exe will be invoked when necessary. The location of the COM exe does not
matter because it has been registered in your system.
3 3 How to debug the Com exe?

• • First, you put the breakpoints where you want them in your exe COM source code. You would now run the COM exe

in debug mode from MSVC++ by going into Build/Start debug/Go or by pressing F5.
• • Now you would go into the TYX studio and run the Wrts.

The run time system would execute until it used the IO Com exe that you have running in debug mode. The execution of the
Wrts would stop at your breakpoints in the COM exe source.

