TYX Corporation

Productivity Enhancement Systems

Reference TYX 0051 11
Revision 1.0

Document ConfControl.doc
Date August 08, 2004

Configuration Control
Management

1 Project CONFIQUIALION:.cocuiii ittt erre s s sbae e s bb e e s ebae e abee e 2

1.1 L1 (oo o3 ([o R 2
1.2 The Station fIlES:vei e 5
121 LOCALIONS: ...ttt ctee ettt ettt e b e et e e s abe e e e abe e e eabe e e ear e e e eraeeebaeean 5
1.3 THE ALIAS FIlE: ..o e 13
1.3.1 [0 o7: 140 13
1.4 LTS 0= 1 =R 13
14.1 [0 oF: 140 R 13
2 Managing the files fOr the WILS:oocvviiiiriec et 14
2.1 INEFOAUCTION: ... et rre e et e e e b e e e bee e ebeeeens 14
2.2 e VLV] (0] (<] USRS 14
23 OB FIIB: .o 15
2.4 2 el 0] (0] =Y o SRS 15
24.1 TNE DASIC PAX ettt ettt ettt et e e etbe e e ebbe e e ebreeabee e 16
24.2 PAX With RTDG OPLION: ..eicivieciviec ettt ettt 17
243 PAX with the debugging option but without SOUrCes:cccccveiveennenne, 18
2.4.4 PAX with Debugging option With SOUICES:ccceevvveiiiiieiiiee e 19

1 Project configuration:

1.1 Introduction:
In a complete test station, you will have at least one of the following:
1. A Paws project with the .paw extension.

2. An Atlas TPS. This file has the default .atl suffix, although it is possible to
have another suffix or no suffix at all (in order to support legacy files). You
may have one or more Atlas file, with one main program and one or more
modules.

3. A Device database file. This file contains the description of your station with
the exception of the switching and the interface adapter. This file is typically
unique to the station and remains with all projects on that station. You can have
one file, or you can have several files in one project, each one describing each
individual instrument in the station. This, or those files have the default .ddb
suffix, although it is possible to have another suffix or no suffix at all (in order
to support legacy files).

This, or these files may also contain TYX Macro code drivers in the event that you chose
to implement the drivers using TY X Macro code as opposed to C/C++ encoded drivers.

4. A Switch database file. This file contains the description of the switches and
the wires that stay with the station. This file typically is unique to the station
and remains with all projects on that station. This file has the default .sdb
suffix, although it is possible to have another suffix or no suffix at all (in order
to support legacy files).

5. An Ita database file. This file contains the wiring in the Interface Test
Adapter. This file is typically associated with the TPS files. This file has the
default .ita suffix although it is possible to have another suffix or no suffix at
all (in order to support legacy files).

In the event that you have a C/C++ driver or drivers, you will also have the following
files:

6. CEM File(s). This driver file (.dll) will be built based on several source files
with the .c/.cpp, .h and possibly the .rc extension. These driver files are
typically unique to a station. These files are needed in the event that there are

no TYX Macro code drivers, although they may coexist i.e., you can have
instruments with TY X Macro code driver, some with CEM drivers and even
some MATE devices that do not require for the user to write any driver, all in
the same project. With the paws environment, you will have some additional
files:

a. A file with the .dfw extension. This file will contain the Wcem Wizard
information including the function mapping.

b. If you care to have a version for the dll that will be generated after
building the CEM files, you will also have a file with the .rc extension.

c. Ifyou generated an MSVC++6.0 project to build the CEM dll, you will
have a couple of files with the extensions: .dsw and .dsp. Those files
will allow you to debug the CEM driver at runtime. For more
information, please refer to document TYX 0051 4. If you used the
NET Studio, you will have files with the .sIln and .vcproj extensions.

Note: Some files generated by the CEM wizard should not be edited:

e Wrapper.c or Wrapper.cpp.

e Key.h

Some files are intended to be edited, but only for the content of the

functions themselves. The user should not manually edit the name of the

function or the comments outside of the function definition. This is true for
the files generated by the wizard:

e <device name>.c or <device hame>.cpp.

e error.c or error.cpp.

e ctlr.cor ctlr.cpp.

In the example below that came out of ctlr.cpp, the text in blue/bold should
not be manual edited.

/IBEGIN{DFW}.CONNECT
int CCALLBACK doLoad ()

J/IEND{DFW}

{

/I user-stub function call

userStubNaaCONNECT();

/I please insert your CEM driver code here

return O;

}

Everything within the curly brackets is intended to include the user code.

Once you have built the project from Paws Studio, you will have a few binaries that may
be of interest to you. The building process is described in full detail in the online help and
there is a very useful diagram in the following location. TPS User's Guide, PART 1,
Section 1, TEST SET MODELING, Section 1, Test Set Modeling Overview, Page 6:

7. Two files with your project name with the .DAT and the .OBJ extension. You
may have a PAX file as well, depending upon the options that you used for the
building process.

8. You have miscellaneous files that are used for optional tools such as the RTDG
or in the process of debugging the Atlas code or the TY X Macro code:

SYM file.

SIG file.

SWX files.
DeviceDB.DEYV file.
ATL source file(s)
DDB source file(s)

KWD files that are not part of the building process, but part of the
environment. They can be found in <usr>\tyx\tab.

LexDB.lex file

Once you have built and run the TPS, you will have a few files that may present some
interest to you:

9. A file with the .ehf extension. This file will contain a history of what you
entered manually at runtime. This may allow you to avoid having to re-enter
manually multiple values that you have already entered.

10. A Log file. The content of this file can be configured in the options for the
Wrts. The name and the location of it may also be configured. The default name
is Log or Log.txt depending upon the Paws Studio version, and the default
location for the log file is in the folder with the paw project.

11. A PRINTER file. The content of which would contain lines that have been
entered by the TPS and have been chose to be sent to a file, which is what
happens by default.

Important Note: If you make changes to the lex files, you will need to rebuild the entire
project. This is made clear in the TPS User’s Guide build diagram referred to above since
the LexDB.LEX is a input to the building process for:

e The Atlas file(s)

e The device database file(s)

e The switch database file

e The itafile and

e The CEM driver environment.
You will first need to reopen the CEM wizard so that the key.h and the wrapper.c(pp)
can be regenerated and then you should do a rebuild all. You should follow this

procedure with your own procedure to distribute potential binary files to various other
projects that use binary files as an input as opposed to source files.

1.2 The Station files:

1.2.1 Locations:

The files below typically stay with the station regardless of the TPS, the ITA or the UUT
that the station is testing. Here is a list of files that are associated to the station:

1.2.1.1 The Device Database(s):

The source files usually ends with the .ddb extension. This is the highly recommended
extension for this type of file. The Paws Studio can accept other extensions and even no
extension in order to support legacy files. You can have one or more files. This file, or
these files, will contain:

o The static description that will describe the devices in the station except for the
resources associated to the switches.

o The TYX Macro code drivers. If you have implemented your drivers using the
TYX Macro code, you do not need an external C/C++ compiler and you do not
need to generate any dlls, which is required when you use C/C++ drivers.

o The binary file that results from building the Device Database file(s) is
DeviceDB.dev. Those Device Database source files can be built into a
DeviceDB.dev file from a project that does not include any other types of source
files (no Atlas files, no Switch Database file and no Ita file).

o Building the .dev separately can be useful when you want to generate one binary
file and have all the other project include this .dev binary as an input to their
building process. That will prevent other projects from making any undesirable
changes to the ddb source code.

o When including a .dev in a project, you have two options:

i. Include the .dev file where it is located

ii. Include the default .dev that has to be located in the
<usr>\tyx\sub\<Subset>\<Station>\station folder. This is the case in the following
picture:

" Paws Developer's St -10| x|
File Edit ‘iew Project Bui .
Paws Developer's

Options Window Help
W= #]emlae] W[
| Bl] o]l B ml

esth Project v

Paws Project |Tun|s |

=l Hg5 PAWS PROJECT
- [ZE ATLAS
= [DEVICEDB
R DeviceDB.DEY
=) [E8 SWITCHDB
D e 2 SyitchDEL W
... [ITADE
o [tests.PAW
- B=] Busconfi
oo [H] testS.EHF

Ready &4

You can determine the location of the files by right clicking on them and
checking on the settings.

1.2.1.2 The Switch Database:

This file has the .sdb extension. This is the highly recommended extension for this type
of file. The Paws Studio can accept other extensions and even no extension in order to
support legacy files.

The binary file that results from building the Switch Database file is the SwitchDB.swx
file. Just like for the device database file(s), you can also build the SwitchDB.swx file
from the Switch Database source file in a project without including any other types of
files in your project (no Atlas file, no Device Database file and not Ita file).

Similarly to the database file, you can chose to generate the SwitchDB.swx from one
project and have all other projects include this .swx binary as an input to their building
process. That will prevent them from making any undesirable changes to the sdb source
code. This is sometimes done in the same project that builds the .dev file for distribution,
often referred to as a master project.

When including a .dev in a project, you have two options:

iii. Include the .dev file where it is located

iv. Include the default .dev that has to be located in the
<usr>\tyx\sub\<Subset>\<Station>\switch folder. This is the case in the following
picture:

" Paws Developer's St =10 x|
File Edit ‘ew Project Bui -
Paws Developer's

Cptions Windaw Help

S = E
BT S P e []

esth Project h

Paws Project |Tuu|s |

=l] PAWS PROJECT
- ATLAS

=[5 DEVICEDB
- DeviceDE DEV
- [l SWITCHDB

Lo 22 SuitchDEL S
...... ITADE
...... I8 tests.Paw
------ =] Buscanfi
...... (] tests.EHF

Ready i

1.2.1.3 The C\C++ driver files:

Those files have the .h, .c or .cpp extension, and possibly a .rc file if you chose to
include one. You have the ability to build a CEM dll or multiple CEM dlls. The default
name for the CEM dll is Wcem.dlIl. You may however give your dll(s) the name(s) that
you want.

Note: It is not recommended to use the name CEM for the name given to the CEM
module or to be building a CEM dll called cem.dll. This will lead to building problems
unless you are an advanced user and really know what you are doing.

1.2.1.3.1 One CEM dll:

Why would you want one CEM dlII?

It may be a contractual requirement.

It may also be considered that in your environment it is easier to manage and move
around: You only have one CEM dll file to worry about.

In this case, you only need one CEM module in your project as illustrated in the
following image:

“" paws Developer's Studio (IEEE716.69/PAWS) Analog.PAY - [DS
=] File Edit Wew Project Build Debug Options Window Help

2B BlBEolE] o] Bl

. finclude "cem.h" -
Analog Project I finclude "key. ko
Paws Prl]]ﬂ[:t |T':":'I5 | char buf[Z5E];
£ (5 PAWS PROTECT FEEEEEEFFEIEFFEIFEEEFFFFEIFEiFiiiidiis 1,
- Ganas [T 090
- [E5 DEVICEDB ,lrr;Em:-?DFwT —=SEE
- [E5 SWITCHDB h
- [EEl ITADB Displayi("CEM doDSF 1 Setupin');
m return f(int) 0;
Analog. PAw }
- B=] Buscarfi
5] Allodinp S FBEGIN{DFW}:DSP:1:2
P @F’- lon. EHE double doDSP_1_Fetch ()
naing. ¢ fEND{DFW}
{ -
| | v
Ready Dperatars Ln 1 | | [

1.2.1.3.2 Multiple CEM dll:
Why would you want to have multiple CEM dlls?

= It may be a contractual requirement.

= It may also be because it is consider to be easier to maintain: You can easily have
one dll per device. Maintaining and updating the dll for one device does not
involve rebuilding a dll that includes all the files for all the other devices, which
may not even be ready to build. This allows different people to build different dlls
independently from what anyone else is doing. The downside to this is that you
will have a lot more dlls to manage and to keep track of.

Note: It is also possible to have a CEM dll support multiple devices but not all the
devices. You would still have multiple dlls, but not as many. It could be for instance
deemed useful to have one dll per programmer.

You may then have one project with multiple CEM modules, or multiple projects with

just one CEM module. Paws Developer Studio will generate one CEM dll per CEM
module. The following image has 3 CEM modules:

“" paws Developer's Studio (IEEE716.89,/PAWS) Analog.PAV - [DE
=] File Edit Wiew Project Buid Debug Cptions ‘Window Help

|| |52 <]] G -&| 8le] =l;

BN e e e d) LY M e [

Analog Project - #include ' cen.h
- finclude "key. k"

Paws Project |Tuu|s | char buf[Z56];

----H.TLHE ;I S i F i i ririifirrififissd g

(4] [ZE] DEVICEDB / /BEGIH{DFW}:DEP: 1:0

- [E8 SWITCHDB ettt

&1 [E8 ITADB q

m Display("CEM doDEP 1 Setupin');

Wcem?2 return (int) 0;

- [E8 Weem3 b

o B Analog.Paw

... B=] Busconfi //BEGIN{DFW}:DEP:1:2

______ E.ﬁ.llncinp double doDSP_1 Fetch ()

= £ FEND {DF}

i [H] Analog, EHF (- ; =
-
— 4] | _"I_I

Ready Cperators Ln1 LM
A

1.2.1.3.3 Good to know in general:

e Generating the CEM dll: In the CEM settings, you can set the location where
the CEM dll will be generated, using either an absolute path, or a path relative to

the project location.

e Third party dlls: For each CEM dll, you may have more than one dll to worry
about in the event that, for instance, you connect to a Pnp driver. Then, outside of
the TY X environment, you also have to worry about the dlls that your code in the
CEM dll is connecting to. For more information on those, you may want to refer

to the instructions that come with the Pnp driver(s).

o Dependency check: In order to see what dll your CEM dll is linked to statically,

you can use the Microsoft tool that comes with the compiler called Depends.

Please note that you will not be able to see what dlls are dynamically linked to the

CEM dll until you try to run your project.

o Here is an example of that tool that opened a CEM dll called WCEM.dII
and wasn’t connecting to any Pnp drivers. This WCEM.dII appears to not

have any problems with static linking. Note how it still uses some
environmental dlls such as User32.dll and more:

: Dependency Walker - Weem.dll - | Ellll

File Edit Wew Window Help

=] 2 o &l BBIm] |

e 0

Crdinal ~ Hink Furiction Entry Poink
=+ USER32.0LL
i-[%] NTDLL.DLL
- 8] KERMEL32.DLL
¢ RIS NTDLL.DLL
B GbIzz.oLL
%] NTDLL.DLL
- 8] KERNEL32.DLL
¢ B8] NTDLL.DLL
L s] USER32.DLL
ordinal © | Hirk | Function | Enkry Point | -
B 1 (0x0001) 0 (0x0000) CHconn 0x000134580
e 2 (0xo00z) 1 {0x0001) CHdisc 0x00013750
[3 (0x0003) 2 (0x0002) cem_close_msg 0x0000ES30
B 4 (0x0004) 3 (0x0003) cem_del 0x0000E770
[B 5 (0x0005) 4 (0x0004) cem_error_dequeue 0x000096F0
[& (0x0006) 5 (0x0005) cem_exit Ox000097 50
@ 7 (0x0007) & (0x0008) cem_tr 0x0000E520
B & (0x0008) 7 (0x0D007) cem_misc 0:x0000E7C0
[9 (0x0009) & (0x0003) cem_open_msg Ox0000E490
[El 10 (0x0004) 9 {0x0009) cem_read_msg 0:x0000EG40
B 11 (0x000B) 10 (0x000A) cem_reset 0=0000ESD0 ||
B 12 (0x000C) 11 (0x000B) cem_thksn 0x0000EGS0
[B 13 (0x0000% 12 (0x000C) cem_untunl Ox0000EGSD hd
Module ~ Time Stamp Size Attributes Machine Subsystem Debug Base File Wer Produck Ver Image ver Linker Yer 5
E GDI3E.DLL 0B/05/03 4:14p | 222,992 [A Intel x86 Win3z console | No 0x77F40000 | 5.0.2195.6762 | 5.0.2195.6762 | 5.0 512 3
E KERMEL3Z.DLL | 0B/05/03 <:14p | 711,440 [A Intel x86 Win3z console | No 0x7C570000 | 5.0.2195.6794 | 5.0,2195.6794 | 5.0 512 3
E MTOLL.DLL 06/19/03 3:05p | 491,792 [A Inkel x86 Win32 consale | No 0x77F80000 | 5.0.2195.6685 | 5.0,2195.6665 | 5.0 512 g
E USER32.DLL 0B/05/03 4:14p | 380,176 | A Inkel x86 Win32 Gul Mo 0x77E10000 | 5.0.2195.6799 | 5.0,2195.6799 | 5.0 512 g
E \WCEM, DLL 05/13/04 3:46p | 413,751 | A Inkel x86 Win32 Gul fes 0x10000000|1.3.0.0 1.2.00 0.0 a.0 4
4] | |
For Help, press F1 v

o This following example, is an example where a dll cannot be found

=1olx|
B Fle Edit View ‘Window Help _I_I- = ll
= 8 o =BIm| ¥l
©-] GOI3Z.OLL »| [ordinal ~ Hirik | Funiction | Ertry Point |
E|] ADVAPI32.DLL
: & | NTDLL.DLL
J KERMEL3Z.DLL
=] B KERNEL32.DLL
L. BIR] NTOLL.DLL
&] ADWAPI3Z.DLL
E| J KERMEL3Z.DLL
----- B8 NTOLL.DLL
-0 TERMI_32.DLL
E| KERMEL3Z.DLL
: JEJ NTOLL.OLL Ordinal = | Hink | Furnickion | Entry Poink |
E| -] TERMS_DTB.DLL [E 1 (0x0001) 0 (0x0000) CHeonn 000023600
= J KERMELA2.0LL [B 2 (0x0002) 1 (0x0001) CHdisc 0x000240F0
LB K] NTDLL.DLL [B 3 (0x0003) 2 {0x0002) cem_close_msg 0x0001FF40
E| [visaz oL B 4 (0a004) 3 (00003) cem_ddl 0000201 60
[5 (0x0005) 4 (0x0004) cem_exit 0x0001BABD
: (@) HPWISA32.OLL [& {0x0008) 5 (0x0005) cem_itr 0x00020230
{1 MsvCRT.OLL [7 (0x0007) & (00006} cem_misc 000020100
El- J KERMEL3Z.DLL [El & (0x0008) 7 (0x0007) cem_open_msg OxO001FEAD
..... SR NTOLL.DLL [2 (0x000%) & (0x0008) cem_read_msg 0x00020550
..... J KERMELZZ.DLL _J|[E 10 (0x0008) 9 (0x0009) cem_reset 0x0001FFED
EI E TERM3_YAL.DLL [B] 11 (0x000B) 10 {00004} cem_thksn 000020090
EM KERNELSZ.DLL [B 12 (0x000C) 11 (Ox00O0B) cem_un_tunl 0x00020040
+ El 13 (0x0000) 12 {0x000C) cem_write_msg 0x00020250
-5 4] MTDLL DL Jid|
Module Tirne: Stamp Size Attnbut Machine Subsystem Debug Base File Wer Product ver Image ver Linker ver =
1 ADvAPISZ.DLL 06/19/03 3:05p | 367,344 Inkel %86 Win3z consale | No 0x7C200000 | 5.0.2195.6710 | 5.0,2195.6710 | 5.0 512
[abI32.DLL 08/05/03 4:14p | 222,992 Inkel %86 Win3z consale | No 0x77F40000 | 5.0.2195.6762 | 5.0,.2195.6762 | 5.0 512
@ HPvIsAz2.DLL File not found in local directory ar search path.
E KERMELZZ.DLL 05/05/03 4:14p | 711,440 [A Intel x86 Win3z console | No 0x7C570000(5.0.2195.6794 | 5.0,2195.6794 | 5.0 512
E M3YCRT.OLL 06/19/03 3:05p | 266,773 | A Intel x86 Win3Z GUI ‘fes 0x78000000|6.1.9544.0 6.1,9544.0 0.0 &.10
E MTOLL.DLL 06/19/03 3:05p | 491,792 [A Intel x86 Win3z console | No 0x77F80000 | 5.0.2195.6685 | 5.0,2195.6685 | 5.0 512
E RPCRT4.DLL 08/23/03 3:48p | 432,912 | A Intel x86 Win3z console | No 077030000 (5.0.2195.6802 | 5.0,2195.65302 | 5.0 512
E TERMS_32.DLL 03/03/99 6:46p | 533,536 | A Intel x86 Win3Z GUI Mo O0=x60000000(1.0.0.1 1.0.0.1 0.0 5.0 ||
E TERMS_DTE.OLL 03/03/99 6i44p | 133,632 | A Intel x86 Win3Z GUI Mo 060180000 (1.0.0.1 1.0.0.1 0.0 5.0
E TERMS_WaAL.DLL 03/03/99 6i46p | 117,245 | A Intel x86 Win3Z GUI Mo 0=x600F0000 | 1.0.0.1 1.0.0.1 0.0 5.0
E USER3E, DLL 08,1'05,1’03 4:14p | 350,176 | A Intel x86 W\n32 G Mo Ux??ElUUUU 5‘0.2195.6?99 5.0, 2195 6799 | 5.0 512

q

For Help, press F1

The name of the dIl will be written up and a message will indicate that
the file could not be found. In this case, HPVISA32.dll appears to be

missing.

Even if the dll can be located, this tool will also report problems with
functions within an existing dll. They can for instance be missing. That
happens sometimes when the version of the dll we are connecting to is

older than the version of the library we were linking to during the
building process.

Please refer to the online help for that tool for further information.

e Atruntime, if the CEM dll loads without any problems, you will have a message

about that dll that will be something like:

CEM ‘<CEM path and name>’, enhanced error reporting

as can be seen on the image below:

2 Run Time System - Production (IEEE716.89,/PAWS) [ANALOG]
File Yiew Run Control Window Help

=10l x|

1 Station Display

=10 Modulel analog

Binary files "analog”, version 20648309

Date stamp: Wed HMay 12 16:48:18 2884

Built In LEX Information

CEM "D:\Src\IEEE71689\Analog\WCEM.DLL®, enhanced error reporting
CemStub 16:83:46 User Uersion not defined

CemStub 16:83:46 TYXCEMSTUBLEVEL=3

CemStub 16:83:46 TYXCEMSTUBFILE=

CemStub 16:83:46 CONMECT

DCP Simulated

ACP Simulated

DHHM1 Simulated

SWE Simulated

CemStub 16:83:46 OPEN

CEH Hodule User / Kernel Hodel 2 Uersion 28048389 (3.9.38)
Executing INITIALIZE 4

StrMo
Yerb
Moun

MChar

Station Reset
Test
Faults 0

Device

Uit |

AR

For Help, press F1 Operators [rTDG oG | [[s
If it can’t find the CEM dll, you will get a warning such as
WARNING: Failed to load <CEM dll name>, file not found
as shown on the image below
2 Run Time System - Production {IEEE716.89,/PAWS) =101x(
File Wiew Run Control Window Help
=
Binary files "apnalog", version 28848309
Date stamp: Wed Hay 12 16:48:18 2004 StmMo
Built In LEX Information Verh
WARNING: Failed to load WCEM.DLL, file not found
Maun
MChar

Station Reset
Test

Faults

AT

Device

Unit |

For Help, press Fi Operatars RTDG W|

| 4

If the file is found, but the dll can’t be loaded because it can’t find a subsequent
dll, you will get a different message of the following format:

WARNING: Failed to load <path and name of CEM dlI>, LoadLibrary API
failed, The specified module could not be found.

1.3 The TPS files:

1.3.1 The Atlas file:
1.3.1.1 Location:

The Atlas file may be located anywhere you would like as far as the Paws Studio is
concerned.

It is however common to have the atlas file in the following location:
<usr>\paws\<Your project folder>.

The legacy location would be to place the Atlas file in the following location:
<usr>\tyx\sub\<subset>\<station>\ATP.

This legacy location may however not be convenient when you have multiple Atlas
programs.

1.3.2 The Ita file:

This file is usually associated to an Atlas program and you can be expected to have
multiple Ita files even if it is possible to reuse a particular Ita file for several Atlas files.

1.3.2.1 Location:

The Ita file may be located anywhere you would like as far as the Paws Studio is
concerned.

It is however common to have the atlas file in the following location:
<usr>\paws\<Your project folder>\ I1taDB.
The default location for the Ita file with respect to the project folder is going to be

A\ltaDB. The location of the Ita file can be changed when adding the Ita module to the
.paw project.

It is also quite common to have the Ita file in the following location:

<usr>\paws\<Your project folder> or the same folder as your Atlas programs. You will
then have to take care to not use the default folder when creating an Ita module in the
Studio project.

The legacy location would be to place the Atlas file in the following location:
<usr>\tyx\sub\<subset>\<station>\I TA. This legacy location may however not be
convenient when you have multiple Ita files.

2 Managing the files for the Wrts:

2.1 Introduction:

As far as the binaries for the TPS, you have basically 3 options:

1. the paw project with the associated files,
2. the .obj file and associated files, and
3. the .pax project.

The first two will allow you to maintain different components of the project separately
while the pax project will allow a more compact set of files making it harder to have the
different components out of synchronization.

2.2 Paw project:

When loading the TPS in the Wrts, you should look for the <Your project name>.paw
file.

Here is the list of files that you will need in order to run a TPS:

1. <Your project name>.paw: This is the project file that you generated with the
Paws Studio.

2. <Your project name>.obj and <Your project name>.dat: Those files are the
result of the building of the Atlas file(s), the Device Database(s), the Switch
Database, and the ITA Database.

3. <Your project name>.sig: This file will be needed in conjunction with the
<Your project name>.swx and the DeviceDB.DEV file in order to use the
RTDG at run time. They are not necessary otherwise.

4. Lexfiles: The binary version of the lex files will be needed for some older
versions of Atlas.

5. Busconfi: This file will be needed. It can be located in one of the following
locations:

a. Local to the .paw file. This location is known as the Local location.
b. In the <usr>\tyx\sub\<Subset>\<Station>\station. This location is known as the
Default location, where <usr> is your installation directory.

For more information on the content of the busconfi file, please refer to the online
help. Here are a few examples of busconfi content regarding the CEM channels:

0 This is an example of the usage of a standard CEM dll with the default name
of Wcem.dll:

“Channel” 2

where 2 is the number associated with the devices that will be using the
Wcem.dll.

0 This is an example of the usage of a CEM dll called WcemDMM.dII in one of
the Default location (which we address later):

“Channel” 2 LIB WcemDMM.dII
where 2 is the number associated with the devices that will be using WcemDMM.dII.

o This is an example of the usage of a CEM dll called WcemDMM.dII in one of
the location which is not a Default location:

“Channel” 2 LIB _\NewFolder\WcemDMM.dIlI
“Channel” 3 LIB WcemScope.dll

where 2 is the number associated with the devices that will be using
WcemDMM.dII. In this case, the CEM dIl WcemDMM.dIl is located in a
folder that is, with respect to the .paw, the .obj or the .pax, called
NewFolder. Please note that this path is a relative path. You may use an
absolute paths as well. The WcemScope.dll is on the other hand local to
the .paw, the .obj or the .pax file.

[<Your driver(s)>].dll: In the event that you have C/C++ driver as opposed to TYX
macro code drivers, you will need to have the dll(s) that were built with Paws Studio or
MSVC++6.0.

o If the busconfi does not specify the location of the dlI(s), it means that you
will have to place this dll, or those dlls into one of the following locations:

a. Locally in the project directory (where the .paw is located).
b. The station subdirectory <usr>\tyx\sub\<Subset>\<Station>\station
containing the busconfi file. For example:

c:\usr\tyx\sub\ieee716.89\paws\station.

c. The folder <usr>\tyx\prg (documented as where the pli.exe is located
by default).

d. The OS Path specified in your environment variables (that you can
easily get by typing C:>path in a DOS command window). This can
also be modified and configured.

If the busconfi specifies the location of the dll(s) with a relative path, or an absolute path,
then you need not worry about the list above. You just have to make sure that the dIl with
the specified name is indeed where it is supposed to be.

This information is located in Using CEM Wizard in the online help.

For third party dlls upon which the CEM dll may depend on, you need to read the
documentation associated to that/those dll(s) for the location requirements of that/those
dll(s).

2.3 Obj file:

When loading the TPS in the Wrts, you should look for the <Your project name>.obj
file. The list of files that you will need in order to run a TPS. It is the same as the list
above minus the .paw file.

The Local folder should in this case be the folder that includes the .obj file as opposed to
the .paw file.

2.4 Pax project:

When loading the TPS in the Wrts, you should look for the <Your project name>.pax
file. In order to build this output file from the Paws Studio, you will need to set an option
in the Paws Studio in order to build it. By default, it is not selected.

Please make sure that you include all the options that you intend to use. For instance, if
you want to use the RTDG, you will need to check the option for the PAX to support it.

Here is the list of files that you will need in order to run a TPS:

1. <Your project name>.pax: This is the project file that you generated with the
Paws Studio. Please make sure that you checked all the options that you need to
support what you intend to do with the PAX file.

2. Busconfi: Please refer to the comments in the Busconfi in the Paw Project topic
above.

3. [<Your driver(s)>].dll: You will need the dlls in the event that you use CEM
drivers. Please refer to the comments in the dll in the Paw Project topic above.

The PAX file may have different content depending upon the options that you have
selected. There are 4 options: the basic PAX file, the PAX file with RTDG support, the
PAX file with debugging capabilities and the PAX file with debugging capabilities with
Atlas and device database sources. You may also chose to check all the options and have
support for RTDG and debugging capabilities with sources.

Here is a description of the standalone options:
2.4.1 The basic PAX:

This is where none of the options are selected. You can use that PAX file with the
WRTS or a client, but you do not have the ability to debug or use the RTDG. In
addition, you will need the Busconfi file and if you have CEM drivers, all the dlls
referred to in the Busconfi file.

PAWS PROJECT Settings x|
fflas | LinkandFlow | Allac | Device | Switch |
It | Wirelist Aichive

¥ Generate Paws executable archive [PA3)

I™ Enable compression Compression level—
£ High
. Wedium
) Low

Archive content

[™ Include suppart for run time diagram generation

™ Include suppart for debugaing

[Inelude &Has and macro divers sounces

Qk. I Cancel Apply Help

The files that are included in the PAX file are:

i. The OBJ file.

ii. The DAT file.

The first two include the binary information that derives from the building process of the
paw project minus the files associated to the CEM driver.

The .ehf file, associated to the history of the values entered manually during
runtime, is currently present but will be removed in a later version.

If you want to analyze the content of the PAX file, you can do so with the
Pawsinfo.exe. Here is a sample of what you will see for this version of the PAX

file:

¥ PawsInfo - D:\Src\JEEE71689Rtdg x|
File Yiew Help
= 3 &% W
Open Sawe | Print | About Help
Mame | ‘ersion | Size | Modified Time | Created Time | Path
RTDG.DAT Thu May 27 11:50:02 2004 22528 05/27/04 15:50:10 05/10/04 20:46:04 RTDG.DAT
RTDG.EHF e 40 05/11/04 15:41:41 05/07(04 19:32:33 | RTDG.EHF
RTDG.QB] Thu May 27 11:50:09 2004 25600 05/27/04 15:50:10 05/10f04 20:46:04 | RTDG.CB]
4 | i
MU v

For Help, press F1

For more information about Pawsinfo.exe, please refer to the online help.

2.4.2 PAX with RTDG option:

This option is to support the usage of the RTDG at runtime. You can use that
PAX file with the WRTS or a client, and you have the ability to use the RTDG. In
addition, you will need the Busconfi file and if you have CEM drivers, all the dlls

referred to in the Busconfi file.

PAWS PROJECT Settings x|

dtlas | LinkandFlow | Ao | Devicee | Swich |
Ita | Wirelist Archive

¥ Generate Paws executable archive [PA)]

I™ Enable compression Compression level—
" High
) Medium
0 Low

Archive content

¥ Include support for run time diagram generation

[Include support for debugging

[T Include &Has and macro drivers sounces

(] I Cancel Apply Help

The files are that included in the PAX file are:
iii. The OBJ file as seen above.
iv. The DAT file as seen above.
v. The DeviceDB.DEV.
vi. The LexDB.LEX file.

vii. The SWX file.

In order to use the RTDG at run-time, the last three files are needed because of the
information they contain. If you want to analyze the content of the PAX file, you can do
so with the Pawsinfo.exe. Here is a sample of what you will see for this version of the
PAX file:

W pawsInfo - D2\ Srct IEEET16894 Ridg x|
Ele Wiew Help

= H| = 8 8
Open Save | Print | About Help
Mame | VYersion | Size | Madified Time | Created Time | Path
DeviceDE,DEY Thu May 27 11:51:14 2004 39936 05/27/04 15:51:14 05/10/04 20:46:03 | DeviceDB.DEY
LexDE . LEX Mon Mar 08 16:40:52 2004 176128 03/08/04 21:40:54 05/11j04 15:37:27 LexDB.LEX
RTDG.DAT Thu May 27 11:51:14 2004 22528 05/27/04 15:51:15 05/10j04 20:46:04 RTDG.DAT
RTDG.EHF VIE 40 05/11/04 15:41:41 05/07j04 19:32:33 RTDG.EHF
RTDG.OB] Thu May 27 11:51:14 2004 25600 05/27i04 15:51:15 05/10j04 20:46:04 RTDG.OBI
RTDG. S Thu May 27 11:51:15 2004 311296 05/27(04 15:51:15 05/10j04 20:46:03 RTDG.SWH
4| | I
Far Help, press F1 UM A

2.4.3 PAX with the debugging option but without sources:

This option is to support the RTDG and the ability to debug. This allows for the
Paws Studio to launch the project and debug the Atlas and the TYX Macro code.
This option is useful only if you are capable to provide the Atlas and the ddb
source files so that you can see what you are debugging. It may be not desirable to
include those files in the PAX file for security reason, but in the presence of the
sources, this PAX file can still allow you to debug without having to rebuild the
project. You can use that PAX file with the WRTS but you need the source files
to see what you are debugging.

In addition, you will need the Busconfi file and if you have CEM drivers, all the
dlls referred to in the Busconfi file.

PAWS PROJECT Settings X

dtas | LirkandFlow | &lloc | Deviee | Swich |
Ita | wirelist Archive

¥ Generate Paws executable archive [P

[" Enable compression Compreszion level
= High

= fedium
 Low

Archive content

[Include suppart for run time diagram generation

v iInclude support for debugging

[T Include &Haz and macro divers sources

k. I Cancel Apply Help

The files are that included in the PAX file are:
viii. The OBJ file as seen above.
ix. The DAT file as seen above.
X. The SYM file.
Xi. The DeviceDB.DEV file.

xii. The SIG file.

In order to debug the Atlas and the TYX macro code at run-time, the last three files are
needed because of the information they contain. If you want to analyze the content of the
PAX file, you can do so with the Pawsinfo.exe. Here is a sample of what you will see for
this version of the PAX file:

¥ pawsInfo - D:\S5rctTEEE716894 Ridg x|
Ele Wiew Help
= H| = 7 8
Cpen Save | Print | About Help
Mame | Version | Size | Madified Time | Created Time | Path
Rbdg.5vmM Thu May 27 17:32:56 2004 34816 05/27/04 21:32:56 05/10j04 20:46:02 DEBUGIRtdg.5YM
DeviceDB.DEY Thu May 27 17:32:57 2004 39936 05/27/04 21:32:57 051004 20:46:03 DeviceDB.DEY
RTDG.DAT Thu May 27 17:32:56 2004 22528 05/27(04 21:32:58 05/10j04 20:46:04 RTDG.DAT
RTDG.EHF IE 40 05/27(04 20:36:29 05/07j04 19:32:33 RTDG.EHF
RTDG.OB] Thu May 27 17:32:56 2004 25600 05/27(04 21:32:58 05/10j04 20:46:04 RTDG.OBI
RTDG.SIG Thu May 27 17:32:56 2004 37888 05/27/04 21:32:58 05/10j04 20:46:04 RTDG.SIG
4| | I
Far Help, press F1 UM 5

2.4.4 PAX with Debugging option with sources:

These options are to support the ability to debug and to have access to the source files.
Please note that you can only include the sources if you select the option for debugging
support. This option is useful in the context of debugging the TPS and TY X Macro code
from a client such as the Litedebugger provided with the distribution or one that you
created. Along with the PAX file, you don’t need to provide the sources because they are
included in the PAX. You can use that PAX file with the WRTS or any client.

In addition, you will need the Busconfi file and if you have CEM drivers, all the dlls
refered to in the Busconfi file.

PAWS PROJECT Settings x|

dtas | LirkandFlow | Alloc | Deviee | Swich |
Ita | Wirelist Archive

[V Generate Paws executable archive [FPai]

[T Enable compression Comprezsion level

= High
= tdedium
= Low

Archive content

™ Include suppart for run time diagram generation

¥ Include support for debugging

v Include &Haz and macro divers sources

k. I Cancel Apply Help

The files are that included in the PAX file are:

xiii. The OBJ file as seen above.
xiv. The DAT file as seen above.
xv. The SYM file.
xvi. The DeviceDB.DEV file.

xvii. The SIG file.

xviii. The KWD files.
xiXx. The LexDB.LEX file.
xX. The ATL file(s).

xXi. The DDB file(s).

In order to have chroma coding with the source files, the KWD files are necessary.
Those files are part of your usual Paws Developer environment.

In addition, the lex file is needed. You will also find the sources files for the Atlas and the
device database(s).

If you want to analyze the content of the PAX file, you can do so with the Pawsinfo.exe.
Here is a sample of what you will see for this version of the PAX file:

¥ pawsInfo - D:\Src IEEE7 1689 Rtdg x|
File Wew Help
= H | 2| 7 W
Open Save | Print | About Help
Mame | ‘ersion | Size | | Created Time I Fath |
PR 7 T T BT 04 15T Bl FWE
; Ridg.ATL [T 11865 | 05/07/04 19:32:33 | O5/07j04 19:32:33 ATLASIREdg.ATL
ﬁa RTDG.PAY Rbdg.5vM Thu May 27 17:37:33 2004 34616 05/27/04 21:37:33 05/1004 20:46:02 DEBUGIREdD, 5vM
Device KWD e 942 050604 16:25:22 0501104 15:37:31 Device KWD
DeviceDB DEV Thu May 27 17:37:34 2004 39936 052704 21:37:34 051004 20:46:03 | DeviceDB.DEY
LexDE.LEx Mon Mar 05 16:40:52 2004 176128 03/08/04 21:40:54 05/1104 15:37:27 | LexDB.LEx®
RTDG.DAT Thu May 27 17:37:33 2004 22528 05/27/04 21:37:35 05/10/04 20:46:04 RTDG.DAT
RTDG.EHF e 40 052704 20:36:23 050704 19:32:33 RTDG.EHF
RTDG.OE] Thu May 27 17:37:33 2004 25a00 05/2704 21:37:35 051004 20:46:04 RTDG.OB]
RTDG.51IG Thu May 27 17:37:33 2004 37685 0502704 21:37:35 05/10/04 20:46:04 RTDG.51G
Rtdg.DDE e 10907 05/07/04 13:32:33 05/07/04 19:32:33 | DEVICEDBIREdg.CDE

For Help, press F1 [v

	1 Project configuration:
	1.1 Introduction:
	1.2 The Station files:
	1.2.1 Locations:
	1.2.1.1 The Device Database(s):
	1.2.1.2 The Switch Database:
	1.2.1.3 The C\\C++ driver files:
	1.2.1.3.1 One CEM dll:
	1.2.1.3.2 Multiple CEM dll:
	1.2.1.3.3 Good to know in general:

	1.3 The TPS files:
	1.3.1 The Atlas file:
	1.3.1.1 Location:

	1.3.2 The Ita file:
	1.3.2.1 Location:

	2 Managing the files for the Wrts:
	2.1 Introduction:
	2.2 Paw project:
	2.3 Obj file:
	2.4 Pax project:
	2.4.1 The basic PAX:
	2.4.2 PAX with RTDG option:
	2.4.3 PAX with the debugging option but without sources
	2.4.4 PAX with Debugging option with sources:

