
TYX Corporation

Productivity Enhancement Systems

Reference TYX_0051_17
Revision 1.0
Document dotNetDebug.doc
Date June 21, 2005

How to debug Wcem.dll with
.NET Studio

1. Studio Version:
This document is for Studio 1.17.0 and later. The pictures below have been made using
version 1.31.1.

The Subset used for the Atlas is IEEE716.89/Paws.

This document assumes that the user has some knowledge of PAWS Developer’s Studio
and MSVS .NET.

2. How to debug the Wcem.dll from the
MSVS .NET compiler:

We can utilize Microsoft Visual .NET and debug our drivers.

The first step is to have an Atlas program and a device database.

We are going to walk through an example in order to make this easier to understand.
Here is the source file for a small Atlas, device database and Busconfi example:

------------------------------ Atlas1.atl --

 000000 BEGIN, ATLAS PROGRAM 'Simple Dynamic' $

E900000 OUTPUT, C'START TEST' $

 10 SETUP, AC SIGNAL,

 VOLTAGE 5 V,

 CNX HI $

 999999 TERMINATE, ATLAS PROGRAM 'Simple Dynamic' $

------------------------------ end of Atlas1.atl --

------------------------------ Ddb1.ddb --

configuration Wcem_debugtest;

def, fnc, Dsp == 45; ** Display

begin dev FNG;

 cnx hi virtualpin;

 begin FNC = 10;

 control{

 voltage range 0 v to 140 v;

 }

 source ac signal;

 end;

end;

------------------------------ end of Ddb1.atl --

------------------------------ busconfi --

; IEEE-488 Bus Configuration File -

"Channel" 2

FNG BUS 2 MLA 11 MTA 11

------------------------------ end of busconfi--

Put those files in a Paws project called dotNETdebug. In our case, we will put the
project under C:\usr\paws\ dotNETdebug.

You may place the Busconfi either in the local directory or you may place it in the station
subdirectory in your Station.

• Build the project, as shown below, under the TYX Studio.

• Now that the device database is built, you can create a Wcem module as shown
below. You can call the module Wcem and redefine the path to locate the module in
the .paw subfolder rather than in .\Wcem.

Note: By default, when you add the name for the Module Name, the files will be put
into Module name subfolder into the .paw folder, so you will need to delete the

module name folder extension that gets added automatically in the Module Location
edit box.

• You will then have access to the Wcem Wizard in order to create the source files
that will allow us to build the Wcem.dll.

• Using the Wcem Wizard… under View, create the proper setup function associated
to the Atlas Setup function. In the next steps you will see what actions to take.

• Left-click on Setup under ACTION AND PARAMETERS and you should see
pulled-down menu on which chose Add Interface Function:

• Then check the voltage[decimal] box.

• You may wish to add some features under Advanced such as shown below. This will
be responsible for an additional C++ file generated by the Wcem Wizard called
ctlr.c.

• Once all the functions have been mapped properly, you should click on OK. The
Wizard will generate a list of source files in the TYX Studio Project. In this case, the
list of files is the following: Wrapper.cpp, key.h, error.cpp, ctlr.cpp and FNG.cpp.

• The file that will include the driver code that you might want to debug will be in this
case FNG.cpp. We will add a Display function in the doFNG_10_Setup function in
FNG.cpp as shown below:

#include "cem.h"

#include "key.h"

//BEGIN{DFW}:FNG:10:0

int doFNG_10_Setup (

 // voltage [decimal]

 double VOLT)

 // Set the return to a non-negative integer to report
a success status.

 // Set the return to a negative integer to report an
error status.

//END{DFW}

{

 // CEM Logging Function

 userStubSETUP();

 // Please insert your CEM driver code here.

 Display(“Entering doFNG_10_Setup\n”);

 return 0;

}---

Note: If you build the Wcem.dll from the Paws Studio, make sure that you either delete it
or overwrite it with Wcem.dll generated by the MSVS .NET Studio, or it might cause
some problems when debugging the dll from the MSVS .NET generated project.

3. The MSVS .NET environment:
Now, we are ready to move on to the MS environment. This example uses the support of
MSVS .NET.

• From the MSVS .NET click on New Project button and select Win32 Project from
the Templates section. Fill in the Name, and the Location as shown below:

• After pressing OK, go to Application Settings and chose DLL under Application
type and Empty project under Additional options as shown below:

• Press Finish.

• Now, select Project, Add Existing Item…. This will open the window below.
Select the TYX Cem C++ files one after another. Here, we will select Wrapper.cpp,
error.cpp, ctlr.cpp and the FNG.cpp files.

• Press Open.

• We now need to add basically all the settings that you would have in the TYX Wcem
settings. The first thing will be to include the additional path of all the header files
that you wish to include in your project. In this case, one that is unavoidable is the
cem.h file from TYX. The path is usually C:\usr\tyx\include. This can be done going
into Project-> <name of the project> Properties…-> C/C++ in the General
Category as shown below:

• Note: For greater safety, make sure that the Runtime Library option under Code
Generation is set to Multi-threaded Debug as shown below:

• Under the General Category in Link, You also need to specify the location of the
Wcem.dll output file. This is where you need to be careful about making sure that it
will not conflict with the one generated with the TYX studio. In this case, we will just
locate the Wcem.dll generated here in the same directory as the one used by the TYX
studio.

• We need to add the additional path for the Additional Library Directories as show
below:

• Under the Input Category in Linker, we need to include all the libraries that will be
addressed by our project. In this case, we need to add cem.lib and user32.lib as
indicated below. You may wish to delete any additional libraries (if any appear) that
aren’t used, but it will not affect your project if you leave them there.

• We also need to ignore the libc.lib library to avoid redefinition warnings.

• Under the Command Line also in Linker, we need to add
/DEF:”C:\usr\tyx\include\WCEM.DEF“ as shown below. If we fail to do this, the
dll will build, but the Wrts will fail to make proper use of the Wcem.dll.

• You are now ready to build the project and start it in debug mode. Make sure that the
Active Solution Configuration is the debug version.

• Build the Paws project from PAWS Studio by pressing F7.

• You can place breakpoints in the CPP files that you have under the MS Studio, such
as at the Display function in the FNG.cpp file.

• Now you can run the project from MS Studio in debug mode via F5 or via Debug-
>Start. You will see the following window:

• That is the window that will determine which executable to launch that will load the
Wcem.dll, which is the output of the MSVS .NET project. Click on the arrow next to
the edit box and select Browse. Select Wrts.exe. This exe is usually located under
c:\usr\tyx\bin

• Click on Open, and then OK.

• Once the Wrts started, you should select the dotNETdebug.PAW project as shown
below:

• Run the project from the Wrts and MSVS .NET will stop at the breakpoint set in the
Setup function as shown below. In this case, we placed a breakpoint in the FNG.cpp
file.

• As we can see, the value specified in the Atlas for the Voltage value is visible.

• Note: If you are having problem with the breakpoint, it will be because you will have
built the Wcem.dll with the Paws Studio which has a release configuration and cannot
be debugged. In order to overcome this problem, you need to rebuild the project from
the MSVS .NET in order to overwritte the Wcem.dll generated by the Paws Studio.

4. How to debug the Atlas while you are
debugging the Wcem.dll driver?

This is a simple procedure.

1. You need to build the Wcem.dll in debug mode.

2. You need to start the Wrts from the MSVS .NET with F5. This will allow to
debug the Wcem.dll.

3. Load the project that you want to run in debug mode.

4. This will put the Wrts at the beginning of the TPS, ready to start.

Note: Before you reach this point, the MSVS may have stopped at a breakpoint that
you placed in the Wcem.dll code. This is not the case in this example.

5. Now, from the Paws Studio, go into Debug/Start Debug/Attach Local

6. This will lead to the following behavior in Paws Studio. In order for this to work
you have to have the Wrts running. In this case, Wrts will have been launched
from the MSVS .NET.

7. You may now debug both the Wcem.dll and the TPS at the same time: The
Wcem.dll from the MSVS .NET and the TPS from the Paws Studio. When
running the TPS, the execution of the TPS will be stopped at either breakpoint in
the TPS or in the C++ code.

	1. Studio Version:
	2. How to debug the Wcem.dll from the MSVS .NET compiler:
	3. The MSVS .NET environment:
	4. How to debug the Atlas while you are debugging the Wcem

